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Abstract 

Recently, there has emerged a growing confusion regarding what to include in an uncertainty 
analysis of a measurement result and what to leave out.  This paper provides guidelines for 
identifying error sources which are relevant to uncertainty analysis and those which are not.  The 
guiding question in such identifications is “what is it we’re uncertain of?”  This question is 
explored within the context of various activities with differing immediate objectives.  Such 
activities include conformance testing, measurement decision risk analysis, capability statement 
development, hypothesis testing and equipment parameter tolerancing. 
 
1 Introduction 

1.1 Purpose 

At ISG, we frequently receive “calls for help” from customers and other colleagues who have 
established valid uncertainty analysis procedures, only to be challenged by accreditation 
assessors less knowledgeable than themselves.  This frequently leads to attempts to update an 
assessor who steadfastly clings to a flawed understanding, often acquired through rudimentary 
training or opinions from “experts” who have lost sight of the guiding question of uncertainty 
analysis, namely, what is it in a measurement result that we’re uncertain of? 
 
This paper is motivated in part by the not inconsiderable and unnecessary administrative 
problems caused for calibration labs which refuse to substitute invalid uncertainty analysis 
procedures for valid ones.  In attempting to provide some explicit guidelines for valid 
procedures, we find there are two main points to be elaborated. 

1. The term “measurement error,” along with its companion term “true value,” are essential 
to addressing the guiding question.2 

2. The errors and uncertainties to include (and exclude) in an uncertainty analysis depends 
on the objective of the measurement being made. 

 
1.2 Background 

In this paper, we focus on the identification of error sources and uncertainties which are relevant 
to alternative measurement activities and objectives.  Accordingly, we begin by defining 

                                                 
1 Presented at the 2012 NCSLI Workshop & Symposium, Sacramento, July 30. 
2 The value of these terms has been argued by Ehrlich and Dybkaer [1]. 
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measurement error and uncertainty.  For the latter, we need to again ask the guiding question.  
The obvious answer is “how close is our measured value to the actual or “true” value of an 
artifact or parameter?” 
 
1.3 Definitions 

1.3.1 True Value 

For most test or calibration purposes, the following definition is adequate: 

A physical property we seek to estimate through measurement. 
 
In appendix B.2.3 of the GUM [2], true value is defined as 

A value consistent with the definition of a given particular quantity that would be obtained by a 
perfect measurement. 
 
In a discussion concerning the impact of measurement conditions on true value changes during a 
measurement session, Kirkup and Frenkel [3] offer the following: 

The value we would obtain for a completely specified measurand if we could use an ideal 
instrument in a completely specified environment. 
 
In the references cited above and in many other publications on measurement uncertainty 
analysis, it is generally understood that the true value of an artifact or parameter is unknowable 
and can, at best, only be estimated.3 
 
1.3.2 Measurement Error 

In the above definitions of true value, reference is made to an “ideal instrument” or “perfect 
measurement.”  In practice, neither exists, since all instruments produce error and all 
measurements exhibit error.  To get a handle on this, we define measurement error as the 
difference between a value obtained by measurement and the corresponding true value.  This 
definition derives from the simple equation 

 meas true measx x   , (1) 

where 

xmeas = value obtained by measured 
xtrue = true value at the instant of measurement 
meas = measurement error. 
 
With this relation and the guiding question, we can readily see that the uncertainty in a 
measurement result can be thought of as the lack of knowledge of the sign and magnitude of 
measurement error.4  This lack of knowledge will be given a mathematical definition presently. 

                                                 
3 In practice, the true value may sometimes be equated with the value that would be obtained by an NMI, such as 
NIST, under conditions identical to those under which the measured value was obtained.  A somewhat related 
definition is offered by Fornasini [4] as applied to published fundamental constants for many didactic applications 
[5]:  A value that is accepted, sometimes by convention, as having an uncertainty suitable for a given application. 

In this paper, such values are regarded as “conventional values” rather than “true values.” 
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2 True Value and Measurement Error 

As mentioned above, use of the term “true value” has recently encountered some resistance.5  
The ostensible reason is that the term cannot be defined independently of other terms, e.g., 
“measured value” and “measurement error.”  Use of the term “measurement error,” has also been 
discouraged since it cannot be rigorously defined independently of “measured value” and “true 
value.”  Since “true value” and “measurement error” are both useful and understood intuitively, 
it would seem counterproductive to avoid their use.  There are at least four reasons why. 
 
First, it is important to realize, that there are many quantities in the physical sciences, such as 
time, length and mass, that also defy definition independently of other quantities, yet are well 
understood and necessary for the pursuit and practice of science. 
 
Second, like time, length and mass, true value and measurement error are also well understood 
until we attempt to define them in some stand-alone fashion.  As Thomas Aquinas once 
remarked “I know what time is, but if someone asks me what time is, I don’t know what it is.”  
Also, like time, length and mass, the concepts of true value and measurement error are necessary 
for cogent measurement uncertainty analysis.  This is evident when we focus on what it is we’re 
uncertain of in a measurement result.  In the discussion following Eq. (1), we defined 
measurement uncertainty as the lack of knowledge of the sign and magnitude of measurement 
error.  This qualitative definition can be quantified by further defining measurement uncertainty 
as the standard deviation of the measurement error probability distribution.  Without getting into 
the rationale for this definition, which is a subject in itself, suffice it to say that it provides a 
guidepost for uncertainty estimation and combination.6 
 
Third, before the introduction of the GUM, the subject of uncertainty analysis was referred to as 
“error analysis” in which many useful concepts and methods were developed over the years.  For 
example, the uncertainty model of Eq. (16) of Section 5.2.2 of the GUM [2] is easily constructed 
by simply taking the variance of an error model which is arrived at by applying small error 
theory to a multivariate or “indirect” measurement [7, 8, 9].7  Additionally, by applying the 
methods of error analysis, it was possible to develop a rigorous method for computing the 
degrees of freedom for Type B uncertainty estimates [10] and a variant of the Welch-
Satterthwaite relation for correlated errors [11]. 
 
Fourth, the concept of measurement error facilitates the development of error models from which 
uncertainty models may be constructed.  This is discussed later under “Computing Uncertainty.” 
 
                                                                                                                                                             
4 It should be noted that Eq. (1) applies to a single measurement made at a given instant of time.  All three quantities 
in the equation may differ from measurement to measurement.  This is discussed further in Section 4. 
5 The GUM discourages the concept of true value [2, D.3.5].  However, to avoid confusion, the concept is 
encouraged in the VIM [6]. 
6 In section E.5.4 of the GUM a statement is made to the effect that avoiding the use of the concepts of true value 
and error eliminates the confusion between error and uncertainty.  Defining uncertainty as is done here clearly 
eliminates confusion and has the advantage of promoting cogent and consistent uncertainty analyses. 
7 As will be shown later, working from a rigorous error model leads to the straightforward development of a 
rigorous expression of uncertainty referred to as an “uncertainty model.” 
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3 Common Measurement Error Sources 

Measurement error sources are present in making a direct measurement of an artifact or 
parameter or of a component of a multivariate measurement (see Section 4.3).  Included in the 
list are8 

 the bias of a reference parameter 

 random error or “repeatability” in the measurement process 

 resolution error of the measurement reference and/or the unit under test (UUT) 

 operator bias in using the measurement reference, the UUT or ancillary equipment 

 influence of environmental factors 

 computation error 

 shipping and handling error 

 digital processing error 

 other. 
 
As will be seen presently, the uncertainty in the bias of the UUT at the time of measurement is 
not included in the list.  This is because, for the measurement activities considered in this paper, 
the point of the activity is to “measure” the values of biases of UUT parameters, estimate the 
uncertainties in the measurements and act on the analysis results [12, 13]. 
 
Several of the errors in the list may include contributions from both the measurement reference 
and the unit under test (UUT).  Exceptions are reference parameter bias, which is solely a 
property of the measurement reference, and shipping and handling error, which results from the 
UUT’s response to stress.  If the objective of a measurement is the evaluation of the reference 
measurement system, it may be advisable to somehow compensate for the UUT contributions.  In 
conformance testing or any other calibration or test in which a decision is made regarding the 
status of the UUT, such compensation is to be avoided. 
 
4 Computing Uncertainty 

4.1 Variance And Uncertainty 

As stated previously, the uncertainty in a measurement is the uncertainty in the measurement 
error, expressed as the standard deviation of the error probability distribution.  This standard 
deviation is just the square root of the “mean square error” or variance of the distribution. 
 
Obtaining the variance of an error distribution can be accomplished by applying a “variance 
operator,” denoted “var,” to the error meas of Eq. (1): 

 variance in var( )meas meas  . (2) 

The variance operator is a mathematical tool the emerges naturally and simply from basic 
probability considerations.  The details of its development and use are routinely given in upper 
division college statistics text.  For our purposes, we state that, for a given measurement, 

                                                 
8 For detailed descriptions of these error sources, see Ref [14]. 
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4.2 Direct Measurements 

4.2.1 Combined Error 

The error meas is comprised of one or more error sources, such as are listed above under 
Common Measurement Error Sources.  Then, for a direct measurement, we can write 

 meas ref ran res op env           , (4) 

where 
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The “ref” and “UUT” labels in the subscripts flag error contributions from the measurement 
reference and the UUT, respectively.  Note that, while ran is separated into measurement 
reference and UUT components, these components are rarely individually distinguishable in 
practical measurement situations. 
 
4.2.2 Combined Uncertainty — The Variance Addition Rule 

Applying the variance operator to Eq. (4) gives 

var( ) var( ) var( ) var( ) var( ) var( )

2cov( , ) 2cov( , ) 2cov( , ) 2cov( , )

2cov( , )

meas ref ran res op env

ref ran ref res ref op ref env

ran res

     

      
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     

   

  



 
  

the cov(i, j) covariance terms represent contributions to var(meas) from interactions or 
correlations between the ith and jth error sources.  For practical purposes, it is usually 
convenient to express covariances in terms of variances and correlation coefficients i,j, i.e., 

,cov( , ) var( ) var( ) cov( , )i j i j i j j i        . 

Using this relation, together with Eq. (3) yields 

  (5) 
2 2 2 2 2 2

2 2 2 2 2 2
, , ,2 2 2

meas ref ran res op env

ref ran ref ran ref res ref res ref op ref op

u u u u u u

u u u u u u  

     

  





Generally, with direct measurements, the correlations between error sources are zero, and Eq. (5) 
becomes 

  (6) 2 2 2 2 2 2 2
meas ref ran res res op envu u u u u u u      
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4.3 Multivariate Measurements 

4.3.1 Combined Error 

For a multivariate or “indirect” measurement, the quantity of interest is a function of more than 
one directly measured quantity or “component.”  For example, letting the variable y represent the 

value of an N-component quantity and the variables x1, x2, …, xN represent the directly measured 
variables, we express y as a function of these variables in a “system equation” 

 1 1( , , , )Ny f x x x  . (7) 

If the errors 1, 2, …, N of the direct measurements are small such that the product of any two 
errors is negligible, then Eq. (7) can be used to construct an error model as a Maclaurin series 
expansion of y to first order according to 

   1 2
1 2

1 1 2 2 ,

y
N

N N

f f f

x x x

c c c

N  

  

      
               
   







.

 (8) 

where c1, c2, …, cN are called sensitivity coefficients and the errors i are the errors in the direct 

measurements of xi, i = 1,2, …, N constructed as in Eq. (4). 
 
4.3.2 Combined Uncertainty 

Using Eq. (8), together with the variance addition rule gives 

  (9) 
2 2 2 2 2 2 2

1 1 2 2 1,2 1 2 1 2

1,3 1 3 1 3 1, 1 1

2

2 2
y N N

N N N N N N

u c u c u c u c c u u

c c u u c c u u



    

   

  




In Eq. (9), the uncertainties ui, i = 1,2, … , N are the uncertainties, expressed as in Eq. (6), of 
each of the N direct measurements. 
 
Note that, in many multivariate measurements, while correlations between the errors of a direct 
measurement are zero, the correlations between error components are not always zero.  For 
example, consider obtaining a measurement of the area A of a rectangular plate by measuring its 
length L and width W using a tape measure.  Suppose, to simplify the discussion, the only error 
source in each measurement is the tape measure bias.  Since it is reasonable to assume that the 
bias is essentially the same for both measurements, we set L,bias = W,bias  b for short.  In this 
simple example, the system equation is 

 A LW , (10) 

where L and W are the directly measured components.  By Eq. (8), we have the error model 

A L L Wc c W     

where 

L

A
c W

L

    
, 

and 
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A
c L

W

    
. 

Since we simplified the example by setting L,bias = W,bias = b, the error model becomes 

( )
A L

b

W L

L W ,
W  


 
 

 

and, from Eq. (9), we get 
2 2 2 2 2

,2A L W L W Lu W u L u LWu u   W . 

In this case, uL = uW = var(b)  ub and this expression becomes 

  2 2 2
,2A L Wu W L LW u   2

b

2
b

. (11) 

Since the same tape measure is used to measure both L and W, the two measurements are not 
independent of one another and, accordingly, the correlation coefficient between L and W is 
nonzero.  Such a correlation between component errors is called a cross-correlation [9].  In this 
case, since the same tape measure is used to measure both length and width, we can safely set 
L,W = 1, and get 

   22 2 2 22A bu L W LW u L W u     , 

so that 
  Au L W u  b . (12) 

To a good approximation, we can set L = Lmeas and W = Wmeas and write 

 A meas meas bu L W  u . 

To see the importance of cross-correlations, it is interesting to consider an example in which the 
length and width measurements are made using different tape measures drawn randomly from an 
inventory.  In this case, the biases may be considered to be independent of one another and we 
set L,W = 0.  Then Eq. (11) becomes 

 2 2 2
A bu W L u  2  

and 

 2 2
Au L W  bu

                                                

. (13) 

Comparison of Eqs. (12) and (13) shows that, if a nonzero L,W is ignored, the estimated 
uncertainty may be considerably different from what is appropriate.  When the cross-correlation 
coefficient is positive, the estimate will be too small.  Conversely, if the coefficient is negative, 
the estimate will be too large.9 
 
5 Relevant Error Sources 

At stated at the outset, whether an error is to be included in an uncertainty analysis, depends on 
the objective of the measurement activity, i.e., the intended use of the uncertainty estimate.  In 

 
9 The proof of this is left as an exercise for the reader. 
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this paper, we consider five basic activities:  (1) conformance testing, (2) measurement decision 
risk analysis, (3) hypothesis testing, (4) capability statement development, and (5) equipment 
parameter tolerancing.  
 
5.1 Conformance Testing 

A conformance test is one in which a decision is made as to whether the value of an attribute is 
within its tolerance limits or not.  The attribute value is estimated by a measurement or set of 
measurements, the result of which is taken to approximate the attribute’s true value under the 
conditions of the measurement.   Inevitably, the estimate is made with some unknown 
measurement error.  As discussed earlier in Section 4, we quantify the uncertainty in the 
measurement as the standard deviation of the error probability distribution.10 
 
In conformance testing, the relevant error sources for direct measurements are those indicated in 
Eq. (4).  For a given measurement, some error sources explicitly included in Eq. (4) may not be 
relevant.  In addition, the list for a given measurement may include several error sources not 
explicitly included.  Assembling the list is a case-by-case exercise.  To reiterate from earlier, the 
one error source never to be included in conformance testing is the bias of a UUT artifact or 
parameter, since this is the quantity we estimate by measurement.  In other words, the 
measurement uncertainty is the uncertainty in the estimate of the bias obtained by measurement 
and does not include any pre-measurement estimate of the UUT bias uncertainty.11 
 
5.1.1 What are we Testing? 

It is important to focus on the fact that what we are testing is the conformance with specifications 
of the attributes or parameters of a UUT.  The information we seek in this context is not the 
quality of the measurement system, useful though that information may be in a different 
context.12 
 
Since the measurement result includes measurement error, we often cannot simply make an in- 
or out-of-tolerance proclamation from the measurement result alone.  Instead, what we may be 
justified in doing is estimating a confidence level that the attribute is in conformance with 
specifications.  The confidence level is typically computed using the estimated standard 
deviation of the measurement error distribution and the degrees of freedom of the estimate.13  If 
the confidence level is sufficiently high, the UUT attribute or parameter may be considered to be 
in compliance with specifications. 
 
                                                 
10 In this paper, the term standard deviation is preferred over the term “standard uncertainty” to emphasize that this 
quantity is a statistic of an error distribution and not just a term used as a heuristic reference devoid of statistical 
content.  See Ref [10] 
11 Clearly, its inclusion would be both frivolous and constitute “double dipping.” 
12 If the uncertainty in the bias of the measurement reference is estimated prior to measurement, the measurement 
result of a conformance test can be used to “update” this uncertainty using Bayesian analysis [7, 15, 16] (see Section 
5.2.5.3). 
13 Other uses of the uncertainty in the measurement result are possible.  For example, this uncertainty is key to 
estimating measurement decision risk and to developing attribute tolerance limits.  The former are important 
measurement quality metrics and the latter can be established to ensure some expectation of passing inspection 
before shipping.  
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This computation is analogous to computing confidence limits from a standard uncertainty 
estimate, the degrees of freedom for the estimate and a stated confidence level, except in this 
case, the confidence limits are the attribute’s tolerance limits and the confidence level is what is 
computed [17]. 
 
It is important to realize that in estimating this confidence level, all relevant sources of error that 
contribute to the total measurement error must be included.14, 15 
 
5.1.2 Contributions to the Uncertainty Estimate 

The guiding light in deciding which error sources to include is the list of factors that affect our 
confidence that the UUT attribute is in-tolerance.  In the case of random error or repeatability, it 
is not relevant whether the random error of the measurement result is due to fluctuations in the 
measurement system or fluctuations in the value of a UUT attribute.  What is relevant is that 
such fluctuations impact our knowledge of the value of the attribute and the confidence that the 
attribute is in conformance with specifications. 

Submit
UUT

Submit
UUT

UUT

Note: UUTUUT is NOT is NOT a measurementa measurement error source in conformance testingerror source in conformance testing

meas
umeas

meas
umeas

Evaluate
Conformance

Evaluate
Conformance

UUT
Tolerance LimitsMeasurement Error Sources

ref , ran , res , op , env ...

Calibrate
or Test

(Measure UUT)

Calibrate
or Test

(Measure UUT)

Conformance Testing

 
Figure 1.  Stages Involved in Conformance Testing.  Shown is a provisional listing of relevant error 
sources accompanying testing or calibration.  Note that the bias UUT is not included as a measurement error 
source. 

 
As an example, consider the calibration of a UUT using a CMM.  In this, a probe is applied and a 
value is obtained.  Suppose that the value lies within the UUT’s tolerance limits.  In this case, we 
might be inclined to declare the UUT in-tolerance.  We now repeat the measurement and obtain a 
value that is out-of-tolerance.  We scratch our heads and ask, “which is it?”  In-tolerance or out?  
To help answer this question, we could take a sample of measurements from which we would 
obtain a mean value and a sample standard deviation, the latter of which would be included in 
the combined uncertainty of the measurement. 
 

                                                 
14 Other considerations, such as attribute value uncertainty growth during use and customer receiving inspection 
false reject risk may also be factored in. 
15 The handling of error sources to develop a total error in a measurement is described in detail for various 
measurement scenarios [12]. 
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It might be said that this is an extreme example.  Perhaps, but not an improbable one.  
Regardless, repeatability must be included in the uncertainty estimate.  Why?  Because 
measurement errors, random or otherwise, can add up, and it’s the uncertainty in the total error 
that must be estimated. 
 
We focus specifically on repeatability in this discussion, since some have advocated excluding it 
from consideration on the grounds that the observed random error is mostly due to the UUT 
rather than the measurement system.  But, we repeat, it is the conformance of the UUT that is 
being tested, not the quality of the measurement system.  Accordingly, excluding repeatability 
uncertainty may constitute a glaring omission, especially for cases where random error 
comprises the dominant uncertainty component.16 
 
Recently, an ISO Technical Standard, ISO/TS 23165:2006, has been released promoting the 
exclusion of repeatability uncertainty in making conformance testing decisions.  This practice is 
just plain wrong.  Possible negative impacts include flawed estimates of in-tolerance probability, 
overly optimistic estimates of measurement decision risk, unrealistic capability statements or 
unsupportable equipment tolerances. 
 
We realize that some would like to sweep random error under the rug, for whatever reasons.  
Nevertheless, in real-world conformance testing, apart from certain exceptions, it must be 
included as an error source. 
 
5.1.2.1 Exceptions 

Now and then, we encounter examples where the random error in a measurement is hidden by 
the granularity of displayed values, as is portrayed in Figure 2 (a).  In cases represented by 
Figure 2 (b), variations in the measurement result are perceptible as repeatability, but 
repeatability need not be included as an error source, since these variations are due to resolution 
error, which is separately accounted for. 
 

(a)(a)

(c)(c)

(b)(b)

(d)(d)  
Figure 2.  Repeatability and resolution error.  Shown are four idealized examples of perceived variations 
being due to random error or resolution error or both.. 

 
In the example shown in Figure 2 (c), perceived variations are mostly due to random error.  
However,  resolution error must be also be included, since its effect on displayed values is not 
trivial.  In the example of Figure 2 (d), resolution error may be excluded as virtually negligible. 
 
Whether to interpret sample variations as due to repeatability or resolution is a case-by-case 
issue.  The point being, it is clearly not justified to exclude one or the other as a blanket policy. 
                                                 
16 In our customer support efforts, we find this to often be the case. 
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5.1.2.2 Single Measurements vs. Measurement Samples 

If a mean value measx  and sample standard deviation sn are calculated from a sample of 

measurements of size n, then, Eq. (1) yields 

 meas true measx x   , (14) 

where 

 
1

1 n

meas i
i

x x
n 

  . (15) 

In Eq. (15), xi is the ith sampled measured value, i = 1,2, …, n.  The sample standard deviation sn 
is given by 

  2

1

1

1

n

n i
i

s x
n 

 
  measx . (16) 

The sample standard deviation in Eq. (16) is an estimate of the uncertainty due to random error 
for a single measurement.  This quantity is useful for characterizing the random error of single 
measurements of a UUT attribute or parameter made with a specific measurement process under 
specific conditions. 
 
If an action is to be taken, based on the mean value in Eq. (15), then the sample standard 
deviation sn is not the correct uncertainty estimate for random error.  Instead, we must use the 
uncertainty in the mean value, given by 

 n
x

s
s

n
 . (17) 

This is referred to in statistics texts as the standard deviation of the sampling distribution [3]. 
 
5.1.3 Conformance Testing Uncertainty Analysis Reports 

Reports of the analysis of the uncertainty in a conformance test should include a breakdown of 
the relevant error sources.  To be thorough, the following details should accompanying each 
direct measurement uncertainty estimate:17 

• Error source name 

• Uncertainty estimate 

• Degrees of freedom 

• Error probability distribution 

• Uncertainty estimate type (A, B or A,B) 

• Comments, if applicable 
 
It is important to note that, if the mean value of a sample of measurements is reported, then the 
random error uncertainty estimate must be the uncertainty in the mean, as given in Eq. (17). 
 
                                                 
17 For an in-depth description of the elements of uncertainty analysis reports, see Ref [18]. 
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5.2 Measurement Decision Risk Analysis 

In this section, methods for computing measurement decision risk are presented within the 
framework of both process-level and bench-level analyses.18 
 
In the following sections, the calibration error for a given measurement scenario is denoted cal 
and the uncertainty in this error is ucal.

19  The uncertainty  ucal is obtained by taking the variance 
of cal, i.e., 

 var( )cal calu  . (18) 

 
5.2.1 Process Level Analysis 

Process-level analysis employs what is referred to as “the Classical Method” [17].  With this 
alternative, risks are evaluated for a UUT attribute test point prior to testing or calibration by 
applying an expected UUT attribute in-tolerance probability and assumed calibration or test 
measurement process uncertainties.  With process-level risk control, test limits called "guardband 
limits" are developed in advance if needed and may be incorporated in calibration or test 
procedures.  Measured values observed outside guardband limits may trigger some corrective 
action, such as adjustment or repair, reduction in status or disposal. 
 
5.2.2 Bench Level Analysis 

Bench-level analysis includes methods referred to as the “Bayesian Method,” the “Confidence 
Level Method” and the “TUR method” [17].  Bench-level methods control risks in response to 
measured equipment attribute values obtained during test or calibration. 20  With bench-level 
methods, guardband limits are superfluous, since corrective actions are triggered by the on-the-
spot computation of risk or other measurement quality metric. 
 
5.2.3 Risk Analysis Variables 

The basic probability functions and definitions of both process level and bench level analysis are 
developed in Sections A.1.1 – A.1.3 of the Appendix. 
 
5.2.4 The Classical Method 

The Classical Method provides process level decision risk control in that risk estimation can 
assist in making equipment adjustment or repair decisions using nominal criteria.  Estimates 
obtained using the classical method are also useful in making equipment procurement decisions, 
adjusting calibration intervals, and setting end-of-period measurement reliability targets. 
 
5.2.4.1 Error Sources 

The error sources of the Calibrate or Test activity shown in Figure 3 are the same as those 
discussed in conformance testing.  In addition to these error sources, risk analysis using the 

                                                 
18 A freeware application called RiskGuard [19] is available from www.isgmax.com for developing some experience 
with all three methods. 
19 Specific combinations of measurement process errors comprising cal have been described [13]. 
20 For detailed descriptions of measurement decision risk analyses, performed within the context of four calibration 
scenarios, see Ref [13]. 
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Classical Method also requires an a priori estimate of the UUT bias uncertainty uUUT.  Note that, 
although the a priori uUUT estimate is required, it is used merely as a risk analysis parameter and 
is not a contributor to the measurement process uncertainty. 
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Figure 3.  The Classical Method of risk analysis.  Shown are the basic steps involved in measurement 
decision risk analysis using the Classical Method.  The terms FAR and FRR represent false accept risk and 
false reject risk, respectively.  The term uUUT represents the a priori bias uncertainty of the UUT .  It is not 
a contributor to measurement process uncertainty, but serves as a risk analysis parameter. 

 

 
Figure 4.  A risk analysis example.  Shown are the results of 
a RiskGuard 2.0 analysis using the Classical Method [19].  In 
the case shown, the maximum allowable risk is 1%, 
necessitating the use of guardband limits of ±9.6627 mV. 

5.2.4.2 Estimating Risk 

The estimation of measurement decision 
risk using the Classical Method is 
presented in Section A.1.4 of the 
Appendix. 
 
Figure 4 shows an example of the Classical 
Method for a case where the maximum 
allowable FAR is 1%.  Since the computed 
FAR is greater than the 1% maximum, the 
use of ± 9.6627 mV guardbands may be 
called for.21 
 
5.2.5 The Bayesian Method 

The Bayesian risk analysis methodology 
was developed by Castrup [23] and 
Jackson [24] in the '80s and later published 
with the label SMPC (Statistical 
Measurement Process Control) [15]. 
  
With the Bayesian Method, a risk analysis 
is performed for accepting or rejecting a 
specific UUT attribute based on a priori 
knowledge and on a “post-test” measured 
or sample mean value for the attribute 
taken during testing or calibration. 

                                                 
21 The applicability of guardband limits is discussed in Ref [17]. 

2012 NCSL International Workshop and Symposium 



 
The post-test or a posteriori knowledge, when combined with the a priori knowledge, allows the 
computation of the quantities of interest, such as UUT and reference attribute biases, bias 
uncertainties and pre-test in-tolerance probabilities [15, 22, 23, 24]. 
 
5.2.5.2 Estimating FAR, FRR, UUT and uUUT 

In addition to estimating false accept risk and false reject risk, the process shown in Figure 5 also 
produces post-test estimates of UUT and uUUT, based on a measured value or sample mean value 
for UUT.  The measurement error sources for the scenario shown in Figure 5 are the same as in 
conformance testing.  As with the Classical Method, an a priori estimate of uUUT is also required.  
Estimating FAR, FRR and the post-test estimates of UUT and uUUT is described in Section A.1.5.2 
of the Appendix. 
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Figure 5.  Bayesian Method of Risk Analysis.  Shown are the basic steps involved in using the Bayesian 
Method to obtain FAR, FRR, and post-test estimates of the variables UUT and uUUT. The a priori uUUT input 
is the a priori estimate of the bias uncertainty of the UUT.  It is not a contributor to measurement process 
uncertainty, but serves as a risk analysis parameter.  The measurement error sources are the same as in 
conformance testing. 

 
An example of the Bayesian Method is 
shown in Figure 6.  The analysis results are 
obtained using the UUT tolerance limits, 
measurement process uncertainty and a 
priori measurement data of Figure 4, in 
which a 1% maximum allowable FAR is 
enforced.  In the Figure 6 example, the 
measured bias of the UUT attribute is 
considered acceptable, since the computed 
in-tolerance probability corresponds to a 
FAR less than 1%. 

 

Figure 6.  Example results with the Bayesian Method.  
Shown are RiskGuard 2.0 [19] Bayesian analysis results 
for the a priori measurement data of Figure 4.  In the 
example, since the calculated in-tolerance probability 
corresponds to a False Accept Risk less than the 1% 
allowable maximum the UUT attribute is acceptable. 

 
5.2.5.3 Estimating ref and uref 

The process shown Figure 7 produces post-
test estimates of ref and uref, based on a 
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measured value of or sample mean value for UUT. The measurement error sources for the 
scenario shown in Figure 7 are the same as in conformance testing with ref replaced by UUT.  An 
a priori estimate of uref is also required.  Estimating FAR, FRR and the post-test estimates of ref 
and uref is described in Section A.1.5.3 of the Appendix. 
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Figure 7.  An alternative application of the Bayesian method.  Shown are the basic steps involved in using 
the Bayesian method to obtain post-test estimates of ref and uref.  The a priori uref input is the a priori 
estimate of the bias uncertainty of the measurement reference.  It is not a contributor to measurement 
process uncertainty, but serves as a risk analysis parameter. 

 
5.2.6 The Confidence Level Method 

The Confidence Level Method, represented in Figure 8, is used to estimate the confidence that a 
UUT attribute bias is in-tolerance, based on a UUT measured or sample mean value, taken 
during testing or calibration, together with an estimated uncertainty in the measurement process.  
Like the Bayesian Method, the Confidence Level Method is also a bench-level method.  The 
relevant error sources are the same as for Conformance Testing. 

Submit

UUT

Submit

UUT

Calibrate
or Test

(Measure UUT

Calibrate
or Test

(Measure UUT

UUTUUT
Confidence 

Level Analysis

Confidence 
Level Analysis

meas
umeas

meas
umeas

InIn--tolerancetolerance
Confidence LevelConfidence Level

UUTUUT
Tolerance LimitsTolerance Limits

Measurement Error SourcesMeasurement Error Sources

refref , , ranran , , resres , , opop , , envenv ......

Confidence Level AnalysisConfidence Level Analysis

 
Figure 8.  The Confidence Level Method.  Shown are the basic steps involved in applying the Confidence 
Level Method to obtain an estimate of the confidence that a UUT attribute or parameter is in-tolerance.  
The error sources are the same as in conformance testing. 

 
The confidence level method is distinguished from the classical and Bayesian methods in that the 
result of the analysis is an in-tolerance confidence level, rather than an in-tolerance probability.    
The method is applied when an a priori uUUT  estimate is not available or feasible.  As such, it is 
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not a true "risk control" method, but rather an application of the results of measurement 
uncertainty analysis.22 
 
5.2.6.1 Confidence Level Estimation 

Estimating confidence level risk control metrics is discussed in Section A.1.6 of the Appendix. 
 
5.2.6.2 Applying Confidence Level Estimates 

As with the Bayesian method, 
corrective action may be called for if a 
computed confidence level Pin is less 
than a predetermined specified limit.  
Let the minimum allowable in-
tolerance confidence level be denoted 
Cmin.  Then corrective action is called 
for if the computed in-tolerance 
confidence level is less than Cmin.

23 
 
Figure 9 shows the results of the 
Confidence Level Method for the a 
priori input data of Figure 4.  It can be 
seen by comparing Figure 9 with 
Figure 6, that applying the Confidence 
Level Method may yield a different 
decision than the Bayesian Method for 
the identical UUT tolerance limits, measurement uncertainty and measurement data.24 

 

Figure 9.  Example results with the Confidence Level Method.  
Shown are RiskGuard 2.0 [19] Confidence Level analysis results 
for the a priori input data of Figure 4.  In the example, the UUT 
attribute is rejected, since the computed confidence level 
corresponds to a False Accept Risk greater than the 1% allowable 
maximum. 

 
5.2.7 The TUR Method 

Over the past five decades, the control of measurement decision risk has been attempted by 
specifying a nominal lower limit for the ratio of the tolerance limits of the UUT to the 
measurement uncertainty of the test or calibration process [25, 26].  These requirements provided 
some loose control of measurement decision risk but were not unambiguously defined or 
standardized.  This state of affairs changed with the definition of an explicit relative accuracy 
requirement, published in ANSI/NCSL Z540.3-2006 [27].  This standard requires that, where it 
is not practical to compute false accept risk, the measurement’s "test uncertainty ratio" or TUR, 
shall be greater than or equal to 4:1. 
 
The Z540.3 TUR definition is given in Section A.1.7 of the Appendix. 
 

                                                 
22 The Confidence Level Method is not included in the current edition of the Z540.3 Handbook [32].  Hopefully, this 
will be rectified in future editions. 
23 If the Z540.3 nominal false accept risk requirement is adhered to, Cmin = 0.98. 
24 This point is discussed in detail in [13]. 
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5.2.7.1 Relevant Error Sources 

The error sources needed to estimate a TUR, shown in Figure 10, are the same as those needed 
for Conformance Testing.  Figures 4, 6 and 9 show examples with a computed TUR of 4.0. 
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Figure 10.  The TUR Method.  The measurement error sources are the same as those for Conformance 
Testing.  The computed TUR is the ratio of the sum of the span of the UUT attribute tolerance limits to 
twice the 95% expanded uncertainty of the measurement process.  The measurement error sources are the 
same as in conformance testing. 

 
5.2.7.2 A Note on Computing TUR 

While the computation of the Z540.3 TUR appears on the face of it to be simple and 
straightforward, some difficulty has emerged since its publication.  This has mainly arisen in 
cases where the UUT tolerance limits are specified in such a way that one or more of the 
specifications used in computing the measurement process uncertainty are also folded into the 
UUT tolerance limits.  In short, some uncertainty contributions in the TUR numerator are also 
contained in the denominator. 
 
This has been seen by some to present a conundrum which prevents achieving a TUR of 4:1 or 
better.  This may be, but the definition is clear.  If a tolerance limit includes information also 
pertinent to the estimation of ucal, this is unfortunate but unavoidable, since the published UUT 
tolerance limits constitute a contractual quality guarantee to the UUT user, and the measurement 
process uncertainty is what it is. 
 
5.2.8 Hypothesis Testing 

Uncertainty estimates can be used to perform statistical tests concerning the populations they 
characterize.  In such testing, the error sources are generally the same as those for conformance 
testing.  In hypothesis testing, however, uncertainty estimates for two or more measurement 
processes may be employed.  An application familiar to practitioners of metrology is the round-
robin comparison of laboratory results.  The applicable hypothesis testing methodology is given 
in Section A.2 of the Appendix. 
 
5.2.9 Developing Capability Statements 

The results of the calibrations performed by a commercial cal lab are used to determine 
equipment attribute in- or out-of-tolerance conditions.  Statements of measurement capability 
made by these labs include uncertainty proclamations.  While the tacit objective of capability 
statements is an expression of measurement quality, in practice the confidence level for in- or 
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out-of-tolerance decisions issued by the lab are affected by the total uncertainty in the 
measurement result, which may include resolution, repeatability or other contributions from the 
UUT.  In such cases, a rigorous capability statement pertaining only to the measurement quality 
of the lab is often not possible.  In this way, UUT properties can emerge as an inconvenience in 
making a viable uncertainty estimate for a capability statement.  However, since these properties 
may influence the confidence in reporting conformance, not including them can lead to 
misrepresentations. 
 
For this reason, some of our customers have taken to issuing UUT-dependent values.  For the 
sake of discussion, We may call these “worst case,” “typical case” and “best case,” depending on 
the class of UUT under consideration.  It is acknowledged that, in a commercially competitive 
market, being honest in this way may constitute a hindrance in terms of loss of business.  This is 
a dilemma.  Forthright statements can be penalized while abbreviated statements are rewarded.  
The same can be said for instrument manufacturers who wish to issue realistic specifications but 
are in competition with manufacturers that do otherwise. 
 
We feel that ignoring errors in measurement results due to UUT influences is not the solution.  If 
the aim is to produce a meaningful standard for conformance testing, these influences must be 
included.  Such inclusion should be mandatory for labs offering calibration services. 
 
5.2.10 Equipment Parameter Tolerancing 

Figure 11 depicts a set of activities that may be relevant to the development, distribution and use 
of a UUT parameter.  These activities carry with them the potential of obtaining information that 
can be employed in arriving at publishable tolerance limits for the parameter in question. 
 
In Figure 11, the variables UUT and uUUT  (1) are the bias and bias uncertainty of an equipment 
parameter emerging from a manufacturing activity.  The variables UUT and uUUT  (2) are the 
same quantities emerging from first article testing.  The variables UUT and uUUT  (3) are the UUT 
parameter’s bias and bias uncertainty as input to the using activity’s receiving inspection. 
 
The sequence in Figure 11 is discussed in the following sections. 
 
5.2.10.1 Produce UUT 

This activity include analyses accompanying the production of the UUT [29].  These analyses 
may include the following 

 Engineering Analysis 

 Component testing 

 Board level testing 

 Module level testing 

 Preliminary development of tolerance limits 
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Figure 11.  Relevant errors for Parameter Tolerancing.  These include the measurement process 
errors which accompany conformance testing as well as error changes and uncertainty growth over 
cal/test intervals [8].  In the sequence, the qualifiers (1), (2) and (3) indicate measurement error 
sources for the producer’s first article testing and the consumer’s receiving inspection testing, 
respectively.  The variable T represents the time elapsed since a previous test or calibration, often 
synonymous with the calibration interval. 

 
5.2.10.2 UUT Testing (Producer) 

This activity consists of first article testing [29].  The variables UUT and uUUT (1) are the input 
parameter bias and bias uncertainty, and the variables UUT and uUUT (2) are the output values. 
 

The variables ref , ran , res , op , env, … are possible error sources accompanying first article 
testing.  The sources listed and implied are applicable to a direct measurement of the value of the 
UUT parameter in question.  If this value is obtained as a multivariate measurement, as described 
in this paper, UUT would be composed of error components, each of which would be composed 
of a combination of direct measurement errors. 
 
5.2.10.3 Receiving Inspection (Consumer) 

This activity involves the testing of the UUT parameters as received by the recipient using 
organization.  The error sources involved in such testing should be considered to be equivalent to 
those of the producer’s Calibrate and Test activity.  However, the sign and magnitude of the 
testing errors and the uncertainty of the result reflect the interaction of the UUT parameter with 
the measurement process of the receiving inspection activity.  These variables, labeled (0) and 
u(0) are taken to be applicable to the beginning of the usage of the UUT. 
 
An estimate of the parameter bias uncertainty u(0) is important to parameter tolerance 
development in that its magnitude is related to the risk of falsely rejecting a conforming 
parameter.  Since this risk is a strong function of the parameter tolerance limits, it is prudent for a 
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producer to estimate u(0), compute the applicable false reject risk and then adjust tolerance limits 
to hold this risk to an acceptable level. 
 
5.2.10.4 Re-calibrate or Test 

As with the impact of u(0) on acceptance testing, the parameter bias uncertainty u(T) 
experienced at the end of a calibration interval T has an impact on the false reject risk resulting 
from re-calibration or test.  Again, it is prudent for a producer to estimate u(T) for reasonable or 
extreme values of T, compute the applicable false reject risk and adjust tolerance limits to hold 
this risk to an acceptable level.  In estimating u(T), account must be taken of both the value of 
the calibration interval T and the parameter bias uncertainty growth rate [8] during anticipated 
conditions of use. 
 
Once the toleranced parameter has been put into use, opportunities for feedback from users may 
lead to refinements in uncertainty estimates for use in modifying tolerance limits, if needed [29]. 
 
6 Summary 

The two main points of Section 1.1 have been discussed at length.  With regard to the first point, 
it has been argued that the terms “error” and “true value” are essential to and useful for 

• developing error models for direct and multivariate measurements 

• identifying and applying correlations between measurements 

• developing uncertainty models by operating on error models using the variance operator 

• evaluating UUTs for conformance with specifications 

• estimating measurement decision risk 

• estimating risk metrics, such as TUR, 

• testing hypotheses 

• developing capability statements 

• developing equipment parameter tolerances. 
 
With regard to the second point, it has been shown that the list of specific errors and 
uncertainties to include in an analysis depends on the objective of the analysis.  The objectives 
considered were those associated with the activities of conformance testing, measurement 
decision risk analysis, hypothesis testing, developing capability statements and developing 
equipment parameter tolerances. 
 
To assist assessors and test or calibration laboratories, the mistake of treating a priori estimates 
of UUT bias uncertainty as a measurement process error source in conformance testing was 
pointed out.  It was also argued that the uncertainty due to random error should not be 
categorically excluded in an estimate of combined measurement error.  In this, it is important to 
note that expediency is neither a substitute for nor a guarantee of validity. 
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Appendix 

A.1 Measurement Decision Risk Analysis 

A.1.1 Risk Analysis Variables 

The basic set of variables that are used in estimating measurement decision risk is shown in 
Table A-1.  Lower and upper UUT tolerance limits are labeled L1 and L2, and lower and upper 
UUT acceptance limits are denoted A1 and A2.  The symbols L and A are defined as L = [-L1,L2] 
and A = [-A1,A2]. 

Table A-1.  Risk Variables Nomenclature 

Variable Definition  
UUT the bias of the UUT attribute value at the time of calibration  
uUUT the uncertainty in UUT, i.e., the standard deviation of the probability 

distribution of the population of UUT values. 
 

-L1 and L2 the tolerance limits for UUT  
-A1 and A2 the “acceptance” limits (test limits) for UUT  

L the range of values of UUT from -L1 to L2 (the UUT tolerance limits)  
A the range of values of UUT from -A1 to A2 (the UUT acceptance limits)  
 a measurement (estimate) of UUT   
cal total error in the measurement of 25  
ucal the uncertainty in cal (same as the uncertainty in meas)  

 
A.1.2 Probability Relations 

Measurement decision risk analysis consists of computing various probability functions.  The 
basic probability functions are given in Table A-2.  In constructing these functions, we make use 
of a notation in which the  operator reads “belongs to” or “is “included in.”  Likewise, the  
operator reads “does not belong to” or “is excluded from.”  In addition, we denote the occurrence 
of an event by the symbol E and the non-occurrence of an event by the symbol E .  We also 
express probabilities in standard probability notation, in which the function P(E1,E2) denotes the 
probability that events E1 and E2 will both occur, and the function P(E2|E1) denotes the 
probability that event E2 will occur, given that event E1 has occurred. 
 

                                                 
25 For many, but not all, measurement scenarios, cal = meas [12]. 
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Table A-2.  Risk Computation Nomenclature 

Risk Analysis Function Definition 

( UUTP ) L  

 

the a priori probability that –L1  UUT  L2.  This is the 
probability that the UUT attribute is in-tolerance at the time of 
measurement. 

( measP ) A  the probability that a measured UUT bias  satisfies the 
condition –A1    A2.  This is the probability that a measured 
value of UUT will be observed to be in-tolerance. 

( ,UUT measP )  L A

)

 the probability that  –L1  UUT  L2  and –A1    A2.  This is 
the joint probability that a UUT attribute will be in-tolerance 
and will be observed to be in-tolerance. 

( |meas UUTP   A L

)

 the probability that, if  –L1  UUT  L2, then –A1    A2.  This 
is the conditional probability that an in-tolerance attribute will 
be observed to be in-tolerance. 

( ,UUT measP   L A

)

 the probability that UUT lies outside L and that –A1    A2.  
This is the joint probability that a UUT attribute will be out-of-
tolerance and will be observed to be in-tolerance. 

( ,UUT measP   L A

)

 the probability that  –L1  UUT  L2  and  lies outside A.  This 
is the joint probability that a UUT attribute will be in-tolerance 
and will be observed to be out-of-tolerance. 

( |UUT measP   L A  the probability that UUT lies outside L given that –A1    A2.  
This is the conditional probability that a UUT attribute observed 
to be in-tolerance will be out-of-tolerance. 

 
Table A-3 shows the equivalence of the probability functions in Table A-2 with generic risk 
probability functions.  In Table A-3, the variable EL represents the event that the UUT attribute is 
in-tolerance and EA represents the event that the attribute is observed to be in-tolerance. 
 

Table A-3.  Risk Analysis Probability Representations 

Description Risk Analysis Function 
Basic Probability 
Representation 

Probability that a UUT attribute is in-tolerance ( )UUTP  L  ( )LP E  

Probability that the measurement result 
(measured bias) is accepted as being in-tolerance 

( )P  A  ( )AP E  

Probability that the UUT attribute is in-tolerance 
and accepted as being in-tolerance 

( ,UUTP )  L A  ( , )L AP E E  

Probability that an in-tolerance UUT attribute 
will be accepted as in-tolerance 

( | UUTP )  A L  ( |A LP E E )

)

 

Probability that the UUT attribute is not in-
tolerance and is accepted as being in-tolerance, 

( ,UUTP   L A  ( , )L AP E E  

Probability that the UUT attribute is in-tolerance 
and rejected as being out-of-tolerance, i.e., FRR 

( ,UUTP )  L A  ( , )L AP E E  

Probability that an accepted UUT attribute is 
out-of-tolerance 

( |UUTP )  L A  ( |L AP E E )  
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A.1.3 Applicable Probability Density Functions 

The probability functions of Tables A-2 and A-3 are mathematically represented by the 
probability density functions (pdfs), shown in Table A-4.  These pdfs relate random variables of 
interest to their probability of occurrence. 

Table A-4 
Risk Analysis Probability Density Functions26 

pdf Description 

f(UUT) pdf for the UUT bias at the time of calibration 

f() pdf for the measurement result 

f(, UUT) pdf for the joint distribution of  and UUT 

f(|UUT) pdf for the conditional distribution of  given UUT 

f(UUT | ) pdf for the conditional distribution of UUT, given a 
measured value  

 
A.1.4 The Classical Method 

Using the definitions in Tables A-1 through A-4, the probability definitions used in the Classical 
Method can be written [7, 13, 17, 20, 21, 22] 
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With the use of the probability notation of Section A.1.2, these relations yield convenient 
expressions for false accept risk FAR, defined as the probability that a UUT attribute is out-of-
tolerance and accepted, and the term FRR, defined as the probability that a UUT attribute is in-
tolerance and rejected: 
 ( , ) ( ) ( , )L A A L AFAR P E E P E E E    (A-4) 

and 
 ( , ) ( ) ( , )L A L L AFRR P E E P E E E   . (A-5) 

                                                 
26 To be more rigorous with respect to notation, each pdf would have its own letter designator or subscript to 
distinguish its functional form from other pdfs.  Such rigor is laudable but leads to a more tedious notation than we 
already have.  It is hoped that the distinct character of each pdf will be apparent from its context of usage. 
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From these expressions, practitioners of statistics will recognize FAR and FRR as consumers’ 
risk and producer’s risk, respectively [30, 31]. 
 
A.1.4.1 Classical Method Risk Computation 

With the Classical Method, it is ordinarily assumed that the measurement result  is normally 
distributed with a mean value of UUT and a standard deviation ucal.  Under this assumption, Eqs. 
(A-1), (A-2) and (A-3) become 
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and 
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where  is the normal distribution function available in most spreadsheet applications. 
 
The variable UUT may follow any number of plausible probability distributions.  In all cases, 
UUT is assumed to have a zero mean value27 and a standard deviation of uUUT.  Like the variable 
, UUT is often assumed to be normally distributed.  For such cases, Eqs. (A-6), (A-7) and (A-8) 
become 
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and 

                                                 
27 A somewhat tacit assumption implied in this statement is that the expectation value of a measurement result is 
equal to the true value. 
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where 

 2
A UUT calu u u  2 . (A-12) 

 
A.1.5 The Bayesian Method 

A.1.5.1 Bayes' Theorem 

The Bayesian Method was derived from Bayes' theorem [23, 29].  In its simplest form, using the 
definitions of Tables 2 and 4, this theorem is given by 
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A.1.5.2 Estimating FAR, FRR, UUT and uUUT 

Assuming normally distributed variables in Eq. (A-13), the post-test pdf for UUT is given by 
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where the variables are as defined in Table A-3.  The parameter  in Eq. (A-14) is a post-test 
estimate of the a priori value of UUT, and u is a post-test estimate of the a priori value of uUUT, 
given by 
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An estimate of the UUT attribute in-tolerance probability PUUT,in is obtained by integrating 
( |UUTf )  from –L1 to L2 
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The probability PUUT,in is the false reject risk FRR if the UUT attribute is rejected.  If the attribute 
is accepted without correction, the false accept risk is just28 

 FAR = 1 – PUUT,in . (A-18) 

A.1.5.3 Estimating ref and uref 

The first step in obtaining a post-test estimate of the uncertainty in ref is to define a new 
uncertainty term 

 2 2
process cal refu u  u . (A-19) 

Next, a calibration uncertainty is defined that would apply if the UUT were calibrating the 
reference 

 2 2
cal UUT processu u u   . (A-20) 

 
 
With the Bayesian Method, the post-test pdf for the a priori value of ref is obtained by 
modifying Eq. (A-15) by replacing  with – , ucal with calu , and the a priori estimate of uUUT 

with the a priori estimate of uref to get 
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From Eq. (A-21), we see that the estimates of the bias of the calibration reference attribute and 
the uncertainty in this estimate are  and u, respectively. 
 
Since we have the necessary expressions at hand, we can also estimate the in-tolerance 
probability Pref,in of the reference.  Letting -l1 and l2 represent lower and upper tolerance limits 
for the reference attribute, this probability is obtained by integrating the pdf ( | )reff e   in Eq. (A-

23) from –l1 to l2 to get 
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28 Strictly speaking, the Bayesian false accept and false reject risks of Eqs. (A-17) and (A-18) are not the FAR and 
FRR defined in Eqs. (A-4) and (A-5), in which both risks are joint probabilities.  The risks of Eqs. (A-17) and (A-
18) are conditional probabilities, since both are probabilities conditional on the measurement result . 
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A.1.6 The Confidence Level Method 

With the confidence level method, we represent values of the population from which  was 
obtained with a random variable , and assume that  is normally distributed with mean  and 
standard deviation ucal.  We then obtain an in-tolerance confidence from29 
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A.1.7 The TUR Method 

A.1.7.1 The Z540.3 Definition 

Z540.3 defines TUR as the span of the UUT tolerance limits divided by twice the "95%" 
expanded uncertainty of the measurement process.  A caveat is provided in the form of a note 
stating that this requirement applies only to two-sided tolerances.  Mathematically, the TUR so 
defined is stated as 

 1

95

TUR
2

L L

U
2

 , (A-25) 

where U95 is the expanded uncertainty of the measurement process multiplied by a coverage 
factor k95 that presumably corresponds to a 95% confidence level 

 U95 = k95ucal. (A-26) 

In Z540.3, k95 = 2. 
 
In addition to restricting the applicability of Eq. (A-25) to the calibration of UUT attributes with 
two-sided tolerance limits, Z540.3 also advises that Eq. (A-25) is strictly valid only in cases 
where the tolerance limits are symmetric, i.e., where L1 = L2.  In such cases, the UUT attribute 
tolerance limits could be expressed in the form ±L, and we would have30 
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A.2 Hypothesis Testing 

A.2.1 Stating the Hypothesis 

A classic example of a hypothesis test is one in which two sample means are compared to see if 
they are significantly different [28].  The hypothesis being tested is a statement that both samples 
belong to the same population.  If this hypothesis is rejected with some level of statistical 
significance, , the samples are said to be incompatible with one another with (1 - )100% 
confidence.  
 

                                                 
29 Cases where the UUT attribute has a single-sided upper or a single-sided lower tolerance limit can be 
accommodated by setting L1 =  or L2 = , respectively. 
30 For other limitations of the TUR Method, see Ref [17]. 

2012 NCSL International Workshop and Symposium 



For example, suppose we want to test whether a given lab is in agreement with a higher-level 
reference lab.  The hypothesis H0 states that the two sample means come from the same 
population and is written 

0 : lab refH x x , 

where 

labx  - mean value obtained by the test lab from a sample of measurements of an artifact 

refx  - mean value obtained by the reference lab from a sample of measurements of the same 
artifact  

 
If H0 is rejected, the test lab sample mean is pronounce defective or “significantly different” 
from the reference lab sample mean. 
 
A.2.3 Constructing the Test Statistic 

The recommended statistic to employ to test H0 is one in which we assume that a test variable tc 
is t-distributed, where tc is given by31 
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where 

slab - standard deviation of the sample of measurements taken by the test lab 
sref - standard deviation of the sample of measurements taken by reference lab 
nlab - sample size of the sample of measurements taken by the test lab 
nref - sample size of the sample of measurements taken by the reference lab 
ulab,other - combined measurement uncertainty of other test lab measurement errors 
uref,other - combined measurement uncertainty of other reference lab measurement errors

 
It is important that both labs take into account errors from all sources.  For instance, suppose that 
repeatability error is mistakenly excluded as an error source by the reference lab or the test lab.  
If so, then the denominator of tc will be smaller that it should be relative to the estimated 

                                                 
31 Historically, what has been applied instead of the statistic tc is a variable En, given by [33] 
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where the uncertainties in the denominator are expanded uncertainties equal to two times the standard uncertainties.  
The lab fails is En > 1.  This test may be thought of as a crude version of the test recommended in this paper. 
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cceptance. 

difference in bias between the two labs.  This will make the value of tc overly large and the 
hypothesis could be erroneously rejected, i.e., the lab could mistakenly fail the test.  Another 
possibility is that the test lab will correctly divide its sample standard deviation by the square 
root of its sample size and the reference lab will not.32  This could again resulting in an 
erroneous failure.  Of course, the reverse situation is also possible, leading to a smaller than 
appropriate value of tc, possibly resulting in an erroneous a
 
A.2.4 Choosing the Critical Statistic 

To test the value of tc, we need to choose a critical statistic that corresponds to a desired 
confidence level C for testing the hypothesis and the degrees of freedom of the combined 
uncertainty.  The degrees of freedom is given by 

2 2

44

( )lab ref
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u u
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2

, 

and the critical statistic is just the t-statistic t,, where  = 1 – C. 
 
A.2.5 Performing the Test 

If ,ct t   then we say that lab refx x  with confidence C.  Otherwise, we accept the hypothesis 

H0 that measurements made by the two labs belong to the same population.33 
 

                                                 
32 This is needed because what is being compared is the difference between mean values.  The rationale is covered in 
statistics texts in discussions of the “sampling distribution.” 
33 This test is appropriate for interlaboratory comparisons or “round robins,” in which the reference lab is referred to 
as the “pivot” lab and there are two or more test labs.  


