
SELECTING AND APPLYING ERROR DISTRIBUTIONS 
IN UNCERTAINTY ANALYSIS1 

 
Dr. Howard Castrup 
Integrated Sciences Group 

14608 Casitas Canyon Road 
Bakersfield, CA 93306 

1-661-872-1683 
hcastrup@isgmax.com 

 

ABSTRACT 

Errors or biases from a number of sources may be encountered in performing a measurement.  Such sources 
include random error, measuring parameter bias, measuring parameter resolution, operator bias, 
environmental factors, etc.  Uncertainties due to these errors are estimated either by computing a Type A 
standard deviation from a sample of measurements or by forming a Type B estimate based on experience.   
 
In this paper, guidelines are given for selecting and applying various statistical error distribution that have 
been found useful for Type A and Type B analyses.  Both traditional and Monte Carlo methods are 
outlined.  Also discussed is the estimation of the degrees of freedom for both Type A or Type B estimates. 
 
Where appropriate, concepts will be illustrated using spreadsheets, freeware and commercially available 
software. 
 

INTRODUCTION 

THE GENERAL ERROR MODEL 
The measurement error model employed in this paper is given in the expression 

 x = xtrue +  (1)

where 
 
x = a value obtained by measurement 
xtrue = the true value of the measured quantity 
 = the measurement error. 
 
With univariate direct measurements, the variable  is composed of a linear sum of errors from various 
measurement error sources.  With multivariate measurements  consists of a weighted sum of error 
components, each of which is make up of errors from measurement error sources.  More will be said on this 
later. 
 

APPLICABLE AXIOMS 
In order to use Eq. (1) to estimate measurement uncertainty, we invoke three axioms [HC95a]: 
 

Axiom 1 

Measurement errors are random variables that follow statistical distributions. 

 
Axiom 1 provides the foundation from which to construct an uncertainty estimate.  That is, although we 
will not ordinarily know the error in a measurement , we can describe it statistically. 
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Axiom 2 

The standard uncertainty in a measurement result is the standard deviation of the 
measurement error distribution. 

 
Axiom 2 identifies the statistic of the error distribution that corresponds to the uncertainty in the 
measurement error . 
 

Axiom 3 

The uncertainty in a measurement is equal to the uncertainty in the measurement error. 

 
Axiom 3 links the uncertainty in the measurement error  to the uncertainty in x. 
 

STATISTICAL DISTRIBUTIONS 
A statistical distribution is a relationship between the value of a variable and its probability of occurrence.  
Such distributions may be characterized by different degrees of spreading or may even exhibit different 
shapes.  A distribution may be continuous or discrete or a mixture of the two. 
 
A variables whose probability of occurrence is described by a statistical distribution is referred to as a 
random variable. 
 
Statistical distributions are usually expressed as a mathematical function called the probability density 
function, or pdf. 
 

ERRORS AND DISTRIBUTIONS 
Axiom 1 tells us that Measurement errors are random variables that follow statistical distributions.  For 
certain kinds of error, such as repeatability or “random error,” the validity of this assertion is easily seen.  
Conversely,  for other kinds of error, such as parameter bias and operator bias, the validity of the assertion 
may not be so readily apparent. 
 
What we need to bear in mind, however, is that, while a particular error may have a systematic value that 
persists from measurement to measurement, it nevertheless comes from some distribution of like errors that 
can be described statistically, i.e., that possess a probability of occurrence [HC2001]. 
 
The upshot is that, whether a particular error is random or systematic, it can still be regarded as coming 
from a distribution of errors that can be described statistically. 
 

ERROR AND UNCERTAINTY 
In estimating measurement uncertainty, we usually assume a zero mean or mode value for error 
distributions.  For such cases, it is easy to grasp that, if measurement errors are tightly constrained around 
zero, the uncertainty in their values is small in comparison with errors that are widely spread.  In other 
words, the spread in an error distribution is synonymous with the uncertainty in the error.  This spread is 
quantified by the standard deviation of the distribution.  Hence, Axiom 2. 2 
 
The standard deviation of a measurement error distribution is the square root of the distribution’s statistical 
variance.  Simply put, this variance is the distribution’s mean square error.  If f() represents the 

                                                           
2 In cases where an error distribution possesses a “known” nonzero systematic bias, the mean or mode 
value may not be zero.  In these cases, the uncertainty estimate includes both the uncertainty in the bias and 
the uncertainty due to the spread of the measurement error. 



probability density function for a measurement error distribution, and  represents the distribution’s mode 
or mean value (usually zero), then the variance or mean square error is given by3 

 2var( ) ( )( )f d    




  , (2) 

and the standard deviation becomes 

 var( )u  . (3) 

Eqs. (2) and (3) show that the uncertainty in a measurement error can be estimated if the distribution’s pdf 
is known.  In this paper, several such pdfs will be discussed.  Guidelines for selecting the applicable pdf in 
an uncertainty analysis will also be given. 
 

MEASUREMENT ERROR DISTRIBUTIONS 

Any one of a variety of distributions may be assumed to represent the underlying distribution of a 
measurement error.  In this paper, we consider the uniform, normal, lognormal, quadratic, cosine, half-
cosine, U-shaped, and the Student’s t distribution.  We also discuss the trapezoidal and utility distributions 
and distributions that emerge from combining errors from different sources. 
 

THE NORMAL DISTRIBUTION 
The normal distribution is the “workhorse” of statistics and probability.  It is usually assumed to be the 
underlying distribution for random variables.  Indeed, the various tools we use in applying uncertainty 
estimates are nearly always based on the assumption that measurement errors are normally distributed, 
regardless of the distributions used to estimate the uncertainties themselves.4 
 
The pdf for the normal distribution is given by 
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Applicability of the Normal Distribution 

Why do we usually assume a normal distribution?  The primary reason is because this is the distribution 
that either represents or approximates what we frequently see in the physical universe.  It can be derived 
from the laws of physics for such phenomena as the diffusion of gases and is applicable to instrument 
parameters subject to random stresses of usage and handling.  It is also often applicable to equipment 
parameters emerging from manufacturing processes. 
 
An additional consideration applies to the distribution we should assume for a total error or deviation that is 
composed of constituent errors or deviations.  There is a theorem called the central limit theorem that 
demonstrates that, even though the individual constituent errors or deviations may not be normally 
distributed, the combined error or deviation is approximately so.  We will return to this later. 
 
An argument has been presented against the use of the normal distribution in cases where the variable of 
interest is restricted, i.e., where values of the variable are said to be bound by finite physical limits.  This 
condition notwithstanding, the normal distribution is still widely applicable in that, for many such cases, 
the physical limits are located far from the population mean. 
 

                                                           
3 Strictly speaking, Eq. (2) applies only to continuous distributions.  Extending the concept to discrete 
distributions is straightforward. 
4 This is especially true in the GUM [ISO1997], although mention is made of other distributions and other 
distributions are applied in GUM examples. 
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The Normal Distribution.  Shown is a case where the error distribution mean value is zero.  The limits ±a are 
approximate 95% confidence limits. 
 
In cases where this is not so, other feasible distributions, such as the  lognormal, quadratic, cosine or half-
cosine distribution can be applied. 
 
Type A Uncertainty Estimates 

When obtaining a Type A uncertainty estimate, we compute a standard deviation from a sample of values.  
For example, we estimate repeatability uncertainty by computing the standard deviation for a sample of 
repeated measurements of a given value.  We also obtain a sample size.  The sample standard deviation, 
equated with the random uncertainty of the sample, is an estimate of the standard deviation for the 
population from which the sample was drawn.  Except in rare cases, we assume that this population follows 
the normal distribution. 
 
This assumption, allows us to easily obtain the degrees of freedom and the sample standard deviation and 
to construct confidence limits, perform statistical tests, estimate measurement decision risk and to 
rigorously combine the random uncertainty estimate with other Type A uncertainty estimates. 
 
Type B Uncertainty Estimates 

A Type B uncertainty estimate is obtained using error containment limits and a containment probability.5  
The use of the normal distribution is appropriate in cases where the above considerations apply and the 
limits and probability are at least approximately known. 
 
The extent to which this knowledge is approximate determines the degrees of freedom of the uncertainty 
estimate [HC00, ISG00].  The degrees of freedom and the uncertainty estimate can be used in conjunction 
with the Student's t distribution (see below) to compute confidence limits. 
 
Let ±a represent the known containment limits and let p represent the containment probability.  Then an 
estimate of the standard deviation of the measurement error distribution is obtained from 
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where -1(.) is the inverse normal distribution function.  This function can be found in statistics texts and in 
popular spreadsheet programs.   
 
If only a single containment limit is applicable, such as with single-sided tolerances, the appropriate 
expression is 

                                                           
5 The containment probability and containment limits for Type B estimates are analogous to the confidence 
level and confidence limits for Type A estimates. 
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The degrees of freedom can be estimated for a normally distributed error according to [ISO97] 
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where 2(u) is the variance in u  A methodology for estimating this variance has been developed [HC00] 
and has been implemented in commercially available software [ISG04] and in a freeware application 
[ISG03b]. 
 

THE UNIFORM OR “RECTANGULAR” DISTRIBUTION 
The uniform distribution has become popular in recent years for reasons discussed below.  It is defined by 
the probability density function 
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where ±a are the limits of the distribution. 
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The Uniform Distribution.  The probability of lying between -a and a is constant.  The probability of 
lying outside ±a is zero. 
 

Type B Uncertainty Estimates 

A Type B uncertainty estimate is usually obtained using error containment limits only.  When this is the 
case, we assume known containment limits ±a and obtain the standard deviation of the error distribution 
using the expression 

 
3

a
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For this expression to be useful, the limits ±a must be minimum containment limits (see below).  In 
practice, we almost never know the value of a, and should attempt to obtain a containment probability p 
and containment limits ±L from whence we get 
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Once we have a value for a, the standard deviation u is computed using Eq. (9). 
 
Criteria for Applying the Uniform Distribution 

The use of the uniform distribution is appropriate under a limited set of conditions.  These conditions are 
summarized by the following criteria. 
 



The first criterion is that we must know a set of minimum bounding limits for the distribution. This is the 
minimum limits criterion.  Second, we must be able to assert that the probability of finding values between 
these limits is unity.  This is the 100% containment criterion.  Third, we must be able to demonstrate that 
the probability of obtaining values between the minimum bounding limits is uniform.  This is the uniform 
probability criterion. 
 
Minimum Limits Criterion 

It is vital that the limits we establish for the uniform distribution are the minimum bounding limits.  For 
instance, if the limits ±L bound the variable of interest, then so do the limits ±2L, ±3L, and so on.  Since the 
uncertainty estimate for the uniform distribution is obtained by dividing the bounding limit by the square 
root of three, using a value for the limit that is not the minimum bounding value will obviously result in an 
invalid uncertainty estimate. 
 
This alone makes the application of the uniform distribution questionable in estimating bias uncertainty 
from such quantities as tolerance limits, for instance.  It may be that out-of-tolerances have never been 
observed for a particular parameter (100% containment), but it is unknown whether the tolerances are 
minimum bounding limits.  Some years ago, a study was conducted involving a voltage reference that 
showed that values for one parameter were normally distributed with a standard deviation that was 
approximately 1/10 of the tolerance limit.  With 10-sigma limits, it is unlikely that any out-of-tolerances 
would be observed.  However, if the uniform distribution were used to estimate the bias uncertainty for this 
item, based on tolerance limits, the uncertainty estimate would be nearly six times larger than would be 
appropriate.  Some might claim that this is acceptable, since the estimate can be considered a conservative 
one.  That may be.  However, it is also a useless estimate.  This point will be elaborated later. 
 
A second difficulty we face when attempting to apply minimum bounding limits is that such limits can 
rarely be established on physical grounds.  This is especially true when using parameter tolerance limits.  It 
is virtually impossible to imagine a situation where design engineers have somehow been able to precisely 
identify the minimum limits that bound values that are physically attainable.  If we add to this the fact that 
tolerance limits are often influenced by marketing rather than engineering considerations, equating 
tolerance limits with minimum bounding limits becomes a very unfruitful and misleading practice. 
 
100% Containment Criterion 

By definition, the establishment of minimum bounding limits implies the establishment of 100% 
containment.  It should be said however, that an uncertainty estimate may still be obtained for the uniform 
distribution if a containment probability less that 100% is applied.  For instance, suppose the containment 
limits are given as ±L and the containment probability is stated as being equal to some value p between 
zero and one.  Then, if the uniform probability criterion is met, the limits of the distribution are given by 
Eq. (9) 
 
However, if the uniform probability criterion is not met the uniform distribution would still not be 
applicable, and we should turn to other distributions.   
 
Uniform Probability Criterion 

As discussed above, establishing minimum containment limits can be a challenging prospect.  Harder still 
is finding real-world measurement error distributions that demonstrate a uniform probability of occurrence 
between two limits and zero probability of occurrence outside these limits.  Except in very limited 
instances, such as are discussed in the next section, assuming a uniform probability is just not physically 
realistic.  This is true even in some cases where the distribution would appear to be applicable. 

 
For example, a conjecture has recently been advanced that the distribution of parameters immediately 
following test or calibration can be said to be uniform.  While this seems reasonable at face value, it turns 
out not to be the case.  Because of false accept risk (consumer’s risk), such distributions range from 
approximately triangular to having a "humped" appearance with rolled-off shoulders. 
 



As to whether we can treat parameter tolerance limits as bounds that contain values with uniform 
probability, we must imagine that, not only has the instrument manufacturer managed to miraculously 
ascertain minimum bounding limits, but has also juggled physics to such an extent as to make the 
parameter value's probability distribution uniform between these limits and zero outside them.  This would 
be a truly amazing feat of engineering for most toleranced quantities — especially considering the 
marketing influence mentioned earlier. 
 
Applicability of the Uniform Distribution 

While the uniform distribution is not physically applicable to most error sources, there is a limited number 
of cases in which it meets the criteria described above. 
 
Digital Resolution Uncertainty 

We sometimes need to estimate the uncertainty due to the resolution of a digital readout.  For instance, a 
three-digit readout might indicate 12.015 V.  If the device employs the standard round-off practice, we 
know that the displayed number is derived from a sensed value that lies between 12.0145 V and 12.0155 V.  
We also can assert to a very high degree of validity that the value has an equal probability of lying 
anywhere between these two numbers.  In this case, the use of the uniform distribution is appropriate, and 
the resolution uncertainty is  

0.0005 V
0.00029 V

3
Vu   . 

RF Phase Angle 

RF power incident on a load may be delivered to the load with a phase angle  between - and .  In 
addition, unless there is a compelling reason to believe otherwise, the probability of occurrence between 
these limits is uniform.  Accordingly, the use of the uniform distribution is appropriate.  This yields a phase 
angle uncertainty estimate of 

1.814
3

u


  . 

It is interesting to note that, given the above, if we assume that the amplitude of the signal is sinusoidal, the 
distribution for incident voltage is the U-shaped distribution. 
 
Quantization Error 

The potential drop (or lack of a potential drop) sensed across each element of an A/D Converter sensing 
network produces either a "1" or "0" to the converter.  This response constitutes a "bit" in the binary code 
that represents the sampled value.  For ladder-type networks, the position of the bit in the code is 
determined by the location of its originating network element.   

 
Even if no errors were present in sampling and sensing the input signal, errors would still be introduced by 
the discrete nature of the encoding process.  Suppose, for example, that the full scale signal level (dynamic 
range) of the A/D Converter is a volts.  If n bits are used in the encoding process, then a voltage V can be 
resolved into 2n discrete steps, each of size a/2n.  The error in the voltage V is thus 

( ) ,
2n

a
V V m    

where m is some integer determined by the sensing function of the D/A Converter.   
 
The containment limit associated with each step is one-half the value of the magnitude of the step.  
Consequently, the containment limit inherent in quantizing a voltage V is (1/2)(a/2n), or a/2n+1.  This is 
embodied in the expression 
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The uncertainty due to quantization error is obtained from the containment limits and from the assumption 
that the sensed analog value has equal probability of occurrence between these limits: 
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Signal Quantization.  The sampled signal points are quantized in multiples of a discrete step size. 

 
Important Considerations 

Despite its “unphysical” character, applying the uniform distribution to obtain Type B uncertainty estimates 
is a practice that has been gaining ground over the past few years.  There are two main reasons for this: 
 
Ease of Use 

Applying the uniform distribution makes it easy to obtain an uncertainty estimate.  If the limits ±a of the 
distribution are known, the uncertainty estimate is computed using Eq. (8). 
 
It should be said that the "ease of use" advantage should be tempered by the following warning:6  
 

"When a component of uncertainty is determined in this manner contributes significantly 
to the uncertainty of a measurement result, it is prudent to obtain additional data for its 
further evaluation." 

  
At our present level of analytical development [SC04], the ease of use advantage is more difficult to justify 
than previously.  Given the emergence of new methods and tools, the only “excuse” for not using a 
physically realistic distribution, applying a containment probability and estimating the degrees of freedom 
(if appropriate) is that the information for doing so is either (1) not at our fingertips or (2) it puts too much 
of a strain on technicians that are not trained in estimating uncertainty.7 
 
GUM Authority 

It has been asserted by some that the use of the uniform distribution is (uniformly?) recommended in the 
GUM.  This is not true.  In fact, most of the methodology of the GUM is based on the assumption that the 
underlying error distribution is normal. 
 
Another source of confusion is that some of the examples in the GUM apply the uniform distribution in 
situations that appear to be incompatible with its use.  It is reasonable to suppose that much of this is due to 
the fact that rigorous Type B estimation methods and tools were not available at the time the GUM was 
published, and the uniform distribution was an "easy out."  As stated above, the lack of such methods and 
tools has since been rectified. 
 
For clarification on this issue, the reader is referred to Section 4.3 of the GUM. 
 

                                                           
6  Quoted from Section 4.3.7 of the GUM. 
7 Since the goal of ensuring accurate measurements often involves the investment of considerable 
management and engineering time, equipment acquisition expenditures and proficiency training costs, it 
seems curious that, just when we get to the payoff, we become lazy and sloppy. 

 



Developing Expanded Uncertainty Limits for Uniformly Distributed Errors 

In recent years, it has become common practice to estimate expanded uncertainty limits for Type B and 
mixed estimates by multiplying the uncertainty estimate by a fixed “k-factor,” usually equal to two.  
Assuming an underlying normal distribution, this produces limits that are roughly analogous to 95% 
confidence limits.  The advisability of this practice is debatable, but that is the subject of a separate 
discussion.  For the present, we consider what results from the practice when estimating an uncertainty for 
an error source where the underlying distribution is assumed to be uniform. 
 
Since the uncertainty is estimated by dividing the distribution minimum bounding limit by the square root 
of three, multiplying this estimate by two yields expanded uncertainty limits that lie outside the 
distribution’s minimum bounding limits.  Curiously, these limits equate to approximately 115% 
containment probability, which is nonsense. 
 
One way of reconciling the practice is to state that the underlying distribution is actually normal, or 
approximately normal, and the uniform distribution is used merely as an artifice to obtain an estimate of the 
distribution's standard deviation.  This is a somewhat amazing statement.  If the underlying distribution is 
normal, why not obtain the uncertainty estimate using that distribution in the first place?  8 
 
It can be shown that using the uniform distribution as a tool for estimating the uncertainty in a normally 
distributed quantity corresponds to assuming a normal distribution with a 91.67% containment probability.  
For organizations that maintain a high in-tolerance probability at the unit level, we often see or can surmise 
98% or better in-tolerance probabilities at the parameter level.  Consequently, for these cases, use of the 
uniform distribution produces uncertainty estimates that are at least 35% larger than what is appropriate. 
 
As for those who find this acceptable on the basis of conservatism, consider the 72% end-of-period 
reliability target applied by one of the U.S. armed forces for general purpose items.  For single-parameter 
items, if the true underlying distribution is normal, use of the uniform distribution produces uncertainty 
estimates that are only about 62% of what they should be.  So much for conservatism.  
 

THE LOGNORMAL DISTRIBUTION9 
The lognormal distribution can often be used to estimate the uncertainty in equipment parameter bias in 
cases where the tolerance limits are asymmetric.  It is also used in cases where a physical limit is present 
that lies close enough to the nominal or mode value to skew the parameter bias pdf in such a way that the 
normal distribution. is not applicable. 
 
The pdf for a lognormally distributed variable x is given by 

                                                           
8 One recommendation that the reader may encounter is that, if all that is available for an error source or 
parameter deviation is a set of bounding limits, without any knowledge of the nature of the error 
distribution and with no information regarding a containment probability, then the uniform distribution 
should be assumed.  There are two points that should be made concerning this recommendation.   

First, after a little reflection on the difficulty of obtaining minimum containment limits without knowledge 
of a containment probability, we can see that the recommendation not advisable.  The prudent path to 
follow is to simply put some effort into obtaining a containment probability estimate and ascertaining a 
most likely underlying distribution.  There is really no way around this.  Moreover, the author has yet to 
observe an uncertainty analysis problem where this could not be done. 

The second point is that, experienced technical personnel nearly always know something about what they 
are measuring and what they are measuring it with.  Except for the cases described above, it is difficult to 
imagine a scenario where an experienced engineer or technician would know a set of bounding limits and 
nothing else. 
9 For a more complete discussion see the article "The Lognormal Distribution," at www.isgmax.com. 
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where q is a physical limit for x and m is the population median.  The variable  is not the population 
standard deviation.  It is referred to as the "shape parameter."  The accompanying graphic shows a case 
where the population mode  = 10, ,  = 0.52046, and m = 10.8011.  The computed standard 
deviation for this example is u . 
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The Lognormal Distribution.  Useful for describing distributions for parameters constrained by a physical 
limit or possessing asymmetric tolerances.  The case shown is a “right-handed” distribution in which the mode 
value is greater than the physical limit. 

 
Distribution Statistics 

In general, for a lognormally distributed variable, we have the following relations: 
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2

( )q m q e      

Mean 
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Variance 2( ) (m q e e  1)   

Standard Deviation 2 2/ 2| |m q e e  1   

 
The quantities m, q and  are obtained by numerical iteration, given containment limits and containment 
probabilities.  To date, the only known analytical metrology applications that perform this process are 
UncertaintyAnalyzer [ISG04] and AccuracyRatio [ISG03a]. 
 

THE TRIANGULAR DISTRIBUTION 
The triangular distribution has been proposed for use in cases where the containment probability is 100%, 
but there is a central tendency for values of the variable of interest [ISO97].  The triangular distribution is 
the simplest distribution possible with these characteristics. 
 
The triangular distribution is also found in cases where two uniformly distributed errors with the same 
mean and bounding limits are combined linearly. 
 
The pdf for the distribution is 
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The Triangular Distribution.  A distribution for linear combinations of two uniformly distributed variables with 
equal mean values and bounding limits. 

 

The standard deviation for the distribution is obtained from 
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Like the uniform distribution, using the triangular distribution requires the establishment of minimum 
containment limits ±a.  The same reservations apply in this regard to the triangular distribution as to the 
uniform distribution.  

 
In cases where a containment probability p < 1 can be determined for limits ±L, where L < a, the limits of 
the distribution are given by 
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Applicability of the Triangular Distribution 

This distribution can be said to apply to linear combinations of pairs of uniformly distributed errors, as 
described above, and to post-test distributions under certain restricted conditions.  It has also shown 
promise when applied to errors involved in interpolating between tabulated values.  In these cases, the 
minimum error occurs at each tabulated value and the maximum error can often be assumed to occur at the 
mid point between these values.  Moreover, assuming a linear error growth curve in these cases is 
methodologically tenable. 
 
Apart from these cases, the triangular distribution has limited applicability to physical errors or deviations.  
While it does not suffer from the uniform probability criterion, as does the uniform distribution, it 
nevertheless displays abrupt transitions at the bounding limits and at the zero point, behaviors which are 
physically unrealistic for measurement errors.  In addition, the linear slopes for probability of occurrence 
are somewhat fanciful for a pdf. 

 

THE QUADRATIC DISTRIBUTION 
A distribution that eliminates the abrupt change at the zero point, does not exhibit unrealistic linear 
probability slopes and satisfies the need for a central tendency is the quadratic distribution.  This 
distribution is defined by the pdf 
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where ±a are minimum bounding limits.  The standard deviation for this distribution is determined from 
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i.e., about 77% of the standard deviation estimate for the uniform distribution. 

0 a- a


f ()

0 a- a


f ()f ()

 

The Quadratic Distribution.  Exhibits a central tendency without discontinuities and does not assume linear pdf 
behavior. 

 
For a containment probability p and containment limits ±L, the minimum bounding limits ±a are obtained 
from 
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Applicability of the Quadratic Distribution 

The quadratic distribution can be applied to error sources whose errors are known to have finite symmetric 
bounding limits and tend to not aggregate closely around the mid point of these limits.  While it displays 
abrupt transitions at the bounding limits as do the uniform and triangular distributions, it is continuous at 
the zero point, and, therefore, is considered to be a more physically realistic distribution. 

 

THE COSINE DISTRIBUTION 
While the quadratic distribution eliminates discontinuities within the bounding limits, it rises abruptly at 
the limits.  Although the quadratic distribution has wider applicability than either the triangular or uniform 
distribution, this feature nevertheless diminishes its physical validity.  A distribution that overcomes this 
shortcoming, exhibits a central tendency and can be determined from minimum containment limits is the 
cosine distribution.  The pdf for this distribution is given by 
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The uncertainty is obtained from the expression 
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which translates to roughly 63% of the value obtained using the uniform distribution. 
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The Cosine Distribution.  A 100% containment distribution with a central tendency and lacking discontinuities. 

 

Solving for a when a containment probability p and containment limits ±L are given requires applying 
numerical iterative method to the expression 

sin( / ) 0,
a

L a ap L L a


    . 

The solution algorithm has been implemented in the same software alluded to in the discussion on the 
quadratic distribution.  It yields, for the ith iteration, 
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where 
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Applicability of the Cosine Distribution 

The cosine distribution can be applied to error sources whose errors are known to have finite symmetric 
bounding limits and display a tendency to aggregate around the mid point.  Unlike the uniform, triangular 
or quadratic distributions, the cosine distribution is continuous both throughout its range and at the 
bounding limits.  In appearance, it resembles the normal distribution and is considered to be physically 
realistic. 
 

THE HALF-COSINE DISTRIBUTION 
The half-cosine distribution is used in cases where the central tendency is not as pronounced as when 
normal or the cosine distribution would be appropriate.  In this regard, it resembles the quadratic 
distribution without the discontinuities at the distribution limits.  The pdf is 
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If the minimum limiting values ±a are known, the uncertainty is obtained from the expression 

 21 8 /u   a . (19) 



If containment limits ±L and a containment probability p are known, the limiting values may be obtained 
from the relation 
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The Half-Cosine Distribution.  Possesses a central tendency but exhibits a higher probability of occurrence near the 
minimum limiting values than either the cosine or the normal distribution. 
 
Applicability of the Half-Cosine Distribution 

As stated above, the half-cosine distribution can be applied to error sources whose errors are known to have 
finite symmetric bounding limits but do not display a tendency to aggregate closely around the mid point.  
It displays the appearance of the quadratic distribution without the drawback of being discontinuous at the 
bounding limits. 
 
Since the half-cosine distribution is continuous both throughout its range and at the bounding limits, it is 
more physically palatable than the uniform, triangular or quadratic distributions,. 
 

THE U DISTRIBUTION 
The following is a derivation of the U distribution, useful for specifying sinusoidal phase-varying subject 
parameters. 
 
Preliminaries 

The U distribution indicates the probability of sampling a particular sine wave amplitude from a signal 
whose phase is uniformly distributed.  The relevant expressions are 
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Change of Variable 

The pdf for  can be obtained by using the change of variable technique: 
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which yields 

 2 2

1
,

( )

0, otherwise.

a x a
f a  

    



 (21) 



- a a0


f ()

- a a0


f ()

 
The U Distribution.  The distribution is the pdf for sine waves of random phase incident on a plane. 

 
The uncertainty in the incident signal amplitude is estimated according to 
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If containment limits ±L  (L < a) and a containment probability p < 1 are known, the parameter a can be 
estimated according to 
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Applicability of the U Distribution 

The U distribution applies to errors that vary sinusoidally with time, such as RF signals incident on a load 
or temperatures maintained by automatic environmental control systems.  Since the distribution is derived 
from the properties of such phenomena, it is a physically realistic distribution. 
 

STUDENT'S t DISTRIBUTION 
If an underlying error distribution is normal, and the degrees of freedom are available, confidence limits for 
measurement errors or parameter deviations may be obtained using the Student's t distribution.  This 
distribution is available in statistics textbooks and popular spreadsheet applications.  Its pdf is 
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where  is the degrees of freedom and  is the gamma function. 
 
The degrees of freedom quantifies the amount of knowledge used in estimating uncertainty.  For a Type B 
estimate, this knowledge is incomplete if the limits ±a are approximate and the containment probability p is 
estimated from recollected experience.  Since the knowledge is incomplete, the degrees of freedom 
associated with a Type B estimate is not infinite.   
 
If the underlying error distribution is normal, the degrees of freedom can be estimated using Eq. (7).  If the 
degrees of freedom can be determined for a Type B estimate, the uncertainty can be rigorously combined 
with Type A estimates. 
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Student's t Distribution.  Shown is the pdf for zero mean and 10 degrees of freedom. 
 
Once the degrees of freedom has been obtained, the degrees of freedom for the combined uncertainty can 
be determined using the Welch-Satterthwaite relation [ISO97].  If the underlying distribution for the 
combined estimate is normal, the t-distribution can be used to develop confidence limits and perform 
statistical tests [HC00]. 
 

THE TRAPEZOIDAL DISTRIBUTION 
If two errors x and y are uniformly distributed with bounding values b and a > b, then their sum 

 = x + y 

follows a trapezoidal distribution with discontinuities at ± (a + b) and ± (a – b).  The pdf is given by 
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Integrating 2 over the bounding limits of this distribution yields the variance 
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and the standard uncertainty is then 
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Applicability of the Trapezoidal Distribution 

As will be shown later in the discussion on convolved errors, the trapezoidal applies to the sum of two 
uniformly distributed errors.  Apart from this fact, it is difficult to imagine an instance where it would be 
applicable on it own merit.  It has been recommended in cases where 100% containment limits are known, 
the probability density is believed to be less near the limits than at their midpoint and there exists a region 
inside the limits where the pdf is approximately uniform. 
 
Given these considerations, we might be more inclined to use the quadratic, cosine, half-cosine or utility 
(see below) distribution on the grounds that each exhibits a more physically realistic character.  Another 
point in its disfavor is that the construction of the trapezoidal distribution requires not only the specification 
of 100% containment limits but uniform density limits as well. 
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Trapezoidal Distribution.   Shown is a distribution for the sum of two uniformly distributed 
variables with bound values a = 3 and b = 1.  The 100% containment limits are ± (a + b) and the 
uniform density limits are ± ( a – b). 

 
In the author’s experience, obtaining the limits of the trapezoidal distribution from technical expertise has 
been met with dubious success. 
 

THE UTILITY DISTRIBUTION 
One of the key variables in evaluating the return on investment of alternative technical decisions or policies 
is a quantity called utility.  A utility function that has been applied to evaluating ROI for test and calibration 
support hierarchies [HC89] is one whose behavior is somewhat similar to that of the trapezoidal 
distribution.  Specifically, this function has a region of approximately uniform utility, bounded by limits 
that mark points where the utility begins to decrease from its maximum value, eventually reaching limits 
that correspond to zero utility. 
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The Utility Distribution.  The probability of occurrence is approximately uniform between the 
values ± a, tapering off to zero at the limits ± b. 

 
The pdf for the utility distribution is 
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where a and b are as shown in the graphic.  An example of the pdf for this distribution is shown above. 
 
Integrating 2 over the bounding limits of this distribution yields the variance 
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and the standard uncertainty is then 
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Applicability of the Utility Distribution 

The character of this function makes it arguably more useful than the trapezoidal distribution in that it is 
free of discontinuities and requires the same information for its specification.  While obtaining the 
necessary information for constructing a utility function is fairly straightforward, obtaining the limits ± a 
for the utility distribution is hampered by the same practical difficulties encountered in obtaining the limits 
for the uniform density portion of the trapezoidal distribution. 
 

RECOMMENDATIONS FOR SELECTING AN ERROR SOURCE DISTRIBUTION 
The following are offered as guidelines for selecting an appropriate error distribution: 
 
1. Unless information to the contrary is available, the normal distribution should be applied as the default 

distribution.  For Type B estimates, the degrees of freedom should be estimated using Eq. (7) and the 
Student's t distribution should be employed to develop confidence limits and to perform statistical tests.   

 
2. If it is suspected that the distribution of the value of interest is skewed, apply the lognormal distribution.  
 

In using the normal or lognormal distribution, some effort must be made to estimate a containment 
probability.  If a set of containment limits is available, but 100% containment has been observed, then 
the following is recommended: 

3. If the value of interest has been subjected to random usage or handling stress, and is assumed to possess 
a central tendency, apply the cosine distribution.  If it is suspected that values are more evenly 
distributed, apply either the quadratic or half-cosine distribution, as appropriate.  The triangular 
distribution may be applicable to estimating uncertainty due to interpolation errors, and, under certain 
circumstances, when dealing with parameters following testing or calibration. 

4. If the value of interest is the amplitude of a sine wave incident on a plane with random phase, apply the 
U distribution. 

5. If the value of interest is the resolution uncertainty of a digital readout, apply the uniform distribution.  
This distribution is also applicable to estimating the uncertainty due to quantization error and the 
uncertainty in RF phase angle. 

 

GENERAL PROCEDURES FOR OBTAINING AN UNCERTAINTY ESTIMATE FOR AN ERROR 
SOURCE 
Type A Estimates 

In making a Type A estimate and using it to construct confidence limits, we apply the following procedure 
taken from the GUM and elsewhere: 

1. Take a random sample of size n representative of the population of interest.  The larger the sample size, 
the better.  In many cases, a sample size less than six is not sufficient. 

2. Compute a sample standard deviation, u using the relation 
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 where the xi, i = 1, 2, …, n comprise a sample of n measured values. 

3. Assume an underlying distribution, e.g., normal. 



4. Develop a coverage factor based on the degrees of freedom (n – 1) associated with the sample standard 
deviation and a desired level of confidence.  If the underlying distribution is assumed to be normal, use 
either t-tables or Student’s t spreadsheet functions.  In Microsoft Excel, for example, a two-sided 
coverage factor can be determined using the TINV function:  TINV((1 ), )t p   , where p is the 

confidence level and  is the degrees of freedom 

5. Multiply the sample standard deviation by the coverage factor to obtain L = tu and use ±L as  
confidence limits. 

100%p

 
Type B Estimates 

In making a Type B estimate, we reverse the process.  The procedure is 

1. Develop a set of error containment limits ±L. 

2. Estimate a containment probability p. 

3. Estimate the degrees of freedom as described in [HC05]. 

4. Assume an underlying distribution, e.g., normal.10 

5. Compute a coverage factor, t, based on the containment probability and degrees of freedom. 

6. Compute the standard uncertainty for the quantity of interest (e.g., parameter bias) by dividing the 
confidence limit by the coverage factor:  /u L t . 

 
 

COMBINING UNCERTAINTIES - THE STANDARD METHOD 

As discussed earlier, the standard uncertainty in a measurement can be determined using Eqs. (2) and (3).  
These expressions are valid, regardless of the error distribution or measurement classification.  The 
standard method takes advantage of this and invokes the central limit theorem mentioned earlier.  This 
allows us to treat combinations of errors as normally distributed variables, thereby making available the 
array of tools developed for this distribution in computing confidence limits, testing hypotheses, developing 
tolerances, and so on. 
 

DIRECT MEASUREMENTS 
A direct measurement is one in which the value of the measurand is sought by measuring a single quantity.  
An example of a direct measurement is the measurement of the voltage of a DC battery using a voltmeter. 
 
For direct measurements, the relevant error model for a measurement subject to k different error sources is 
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By Eq. (2) the variance of an error distribution is the square of the standard uncertainty of the error.  Using 
Eq. (2), It can be shown that the variance of  is given by 
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, (29) 

where var(i) is as defined earlier, and where the cov(.) term represents the covariance between error 
sources.  Ordinarily, we replace the covariance term with a correlation coefficient defined by 

 
10 The Type B estimation procedure has been refined so that standard deviations can be estimated for non-
normal populations and in cases where the confidence limits are asymmetric or even single-sided [3, 5].   
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where 

 var( ) , 1,2, ,i iu i k    (31) 

Substituting Eq. (30) in Eq. (29) and using Eq. (3) gives 
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For direct measurements, the errors are nearly always statistically independent, and the correlation 
coefficients are zero.  The expression 
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applies in these cases.  Invoking the central limit theorem, we treat  as a normally distributed quantity, and 
use the Student’s t distribution and other statistical tools in applying the uncertainty estimate u. 
 
Degrees of Freedom 

The amount of information used to estimate the uncertainty in a given error is called the degrees of 
freedom.  The degrees of freedom is required, among other things, to employ an uncertainty estimate in 
computing confidence limits commensurate with some desired confidence level. 
 
The degrees of freedom for a Type A estimate is usually taken to be n - 1, where n is the number of 
independent measurements employed in computing the Type A uncertainty estimate.  The degrees of 
freedom for a Type B estimate can be determined using the methodology of [HC05]. 
 
Whether estimates are Type A or Type B, the degrees of freedom for a combined uncertainty estimate for 
an error composed of a linear combination of errors is given by the Welch-Satterthwaite relation.  For 
uncorrelated errors, this relation is given by  
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where u is the combined uncertainty and ui and i are the uncertainty and degrees of freedom, respectively, 

for the ith uncertainty estimate, i = 1, 2, ..., k. 
 
If errors are correlated, a modified form of the Welch-Satterthwaite relation has been recently developed 
[HC05]: 
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where ij if the correlation coefficient for the ith and jth errors and 2(u) is given in [HC05]. 
 

MULTIVARIATE MEASUREMENTS 
With multivariate measurements, two or more quantities are measured to obtain the value of the measurand.  
For example, the measurements of the area of a rectangular plate would involve measurements of the 
plate’s length and width.   
 



In multivariate measurements, we work with a system equation that describes the measurement result in 
terms of the individual component measurements.  To illustrate, let y represent the value of the measurand 
and let x1, x2, …, xm represent the quantities measured to obtain a value for y.  In the parlance of uncertainty 
analysis, these quantities are referred to as components of the measurement, and their associated 
measurement errors are called error components.   
 
The system equation would be written 

1 2( , , , )my f x x x  , 

or, alternatively, 

( )y f x , 

where 

1 2( , , , )T
mx x x x . 

Before we can compute a variance for the error in the measurement of y, we need to develop an error 
model.  The usual approach is to expand y in terms of its components using a first-order MacLaurin series: 

 
1

m

i
i i

y

x
 



 
   
 . (33) 

Next, we apply Eq. (3) to obtain 
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In this expression, the correlation coefficient represents cross-correlations between error components.  
These coefficients are expressed in terms of the applicable error sources according to 
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where the terms uik represent the uncertainty due to the kth error source in the measurement of the ith error 
component and ijkl is the correlation coefficient for the kth error source of the ith error component and the 
lth error source of the jth error component, i.e., 
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The uncertainty ui in the ith component error is obtained from 
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The coefficient ikl is the correlation coefficient for the kth and lth error sources of the ith error component 
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CONVOLVING S-INDEPENDENT ERROR SOURCES 

If two errors are statistically independent, the distribution of their sum can be readily obtained by 
convolution.  The procedure is as follows:  Let x and y be two s-independent continuously distributed 
measurement errors with pdfs f(x) and g(y), respectively.  Then the distribution of  

  = x + y (36) 

can be obtained from the relation 

 ( ) ( ) ( )x x xh f g d    
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  . (37) 

Several examples of distributions obtained in this way are given in the next two sections 
 

DIRECT MEASUREMENTS 
A direct measurement is one in which the value of the measurand is sought by measuring a single quantity.  
An example of a direct measurement is the measurement of the voltage of a DC battery using a voltmeter. 
 
For direct measurements, the relevant error model for a measurement subject to k different error sources is 
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In using this expression, we might imagine that 1 refers to equipment bias, 2 represents repeatability error, 
3 is operator bias, etc.  For practically all direct measurements, these error are s-independent and 
convolution can be used to obtain the distribution for .  Expressions are provided in what follows for 
certain simple convolutions.  For general cases, it is often preferable to integrate Eq. (37) numerically, as 
discussed later. 
 
Convolved Uniform Distributions 

Two-Variable Case 

Consider two s-independent uniformly distributed errors 1 and 2 with pdfs 
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and (39) 
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Using Eq. (39) in Eq. (37) gives for b > a 
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The Trapezoidal Distribution.  Shown is the distribution for the sum of two uniformly 
distributed errors with equal means and where b > a.  A freeware application was used to develop 
the graphic [ISG04b]. 
 

 
An interesting example in which two uniformly distributed errors are combined is when a = b.  In this case, 
the distribution becomes the familiar triangular distribution shown below. 

 

The Triangular Distribution.  Shown is the distribution for the sum of two uniformly distributed 
errors with equal means and equal limits.  
 

Three-Variable Cases 

Consider three s-independent uniformly distributed errors 1, 2 and 3 with pdfs 
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and (41) 
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A number of combinations of relative sizes of a, b and c are possible.  One case, where c > b > a and c > a 
+ b, will be explicitly constructed.  Other cases can be built in like manner.  All cases will be shown in the 
following figures.  

Case 1:  c > b > a and c > a + b 

The pdf for this case is broken up into six pieces: 
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The pdf for this combination of bounding limits is shown below. 

 

An Approximate Utility Distribution.  Shown is the distribution for the sum of three uniformly 
distributed errors with equal means and where a > b > c.  In the case depicted, c > a + b.  Notice 
the similarity in form of the convolved distribution and the utility distribution discussed earlier. 



Case 2: c > b > a and c < a + b 

 

An “Unbalanced”  Uniform Convolution.  Shown is the distribution for the sum of three 
uniformly distributed errors with equal means and where a > b > c.  In the case depicted, c < a + b.  
In this case, the convolved distribution appears to favor both the normal and triangular 
distributions. 

 

Case 3:  c > b > a and a = b + c 

In this case, the convolved distribution takes on a more normal appearance, as shown below. 

 

A “Symmetric”  Uniform Convolution.  Shown is the distribution for the sum of three uniformly 
distributed errors with equal means and where a > b > c.  In the case depicted, c = a + b.  In this 
case, the convolved distribution begins to take on the character of the normal distribution. 

Case 4:  a = b = c 

In this case, the convolved distribution takes on a normal appearance, squeezed in the middle, as shown 
below. 



 

A “Balanced”  Uniform Convolution.  Shown is the distribution for the sum of three uniformly 
distributed errors with equal means and where a = b = c.  In this case, the convolved distribution 
looks like a normal distribution cinched at the waist 

. 
Convolved Normal Distributions 

Two-Variable Case 

Consider two s-independent normally distributed errors 1 and 2 with pdfs 
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Using Eq. (42) in Eq. (37) yields for  = 1 + 2 
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where 
2 2
1 2u u u  , 

and 

1 2    . 

From Eq. (43), we see that the convolved distribution is itself a normal distribution.  By induction, we note 
that the distribution of the sum of any number of normally distributed errors is also a normal distribution. 
 
Convolved Uniform and Normal Distributions 

For this combination, we have 
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Convolving these pdfs yields 



2 1 2 1

2 2

( ) ( )1
( )

2

a a
h

a u u

     
              
    





, 

where  is the normal distribution function defined by 
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Convolution of Uniformly and Normally Distributed Errors.  Shown is the distribution for the 
sum of a uniformly distributed error and a normally distributed error with mean values equal to 
zero.  In the case depicted, u1 and u2 are equal. 

 
Convolved Uniform and Cosine Distributions 

For this combination, we have 
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For simplicity, let 1 = 2 = 0.  Then the convolution yields 
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Convolution of Uniform and Cosine Distributions.  Shown is the distribution for the sum of a 
uniformly distributed error and a an error that follows the cosine distribution.  In the case depicted, 
mean values for both errors are zero and b = 2a. 

 

MONTE CARLO METHODS 

S-INDEPENDENT ERROR SOURCES 
The errors associated with many of the measurements we make are statistically independent of one another.  
In what follows, we examine both direct measurement cases, in which a measuring device directly 
measures the quantity of interest, and multivariate measurement cases, in which several different quantities 
are measured to obtain the value of the quantity of interest. 
 
Direct Measurements 

Let 1 and 2 represent s-independent errors involved in making a direct measurement.  The error model 
becomes 

 1 2     (43) 

To simulate a distribution of errors , we simulate an n-component vector of errors 1 and an n-component 
vector of errors 2 and add the two to get the vector of simulated errors : 

 1 2    . (44) 

A simulated distribution for  is shown below. 
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Monte Carlo Simulation for the Distribution of the Sum of Two Uncorrelated Measurement Errors.  
Shown is the distribution for a measurement error composed of a uniformly distributed error with bounding 
limit a = 2.0 and a normally distributed error with a standard deviation of 1.0.  The population standard 
deviation (standard uncertainty) is 1.5275.  The standard deviation computed from the simulated 
distribution is 1.5238. 
 
Multivariate Measurements 

Consider the measurement of velocity obtained by measuring distance d and time t: 

 
d

v
t

 . (45) 

Suppose that d is measured with a tape measure and that t is measured with a stopwatch.  For discussion 
purposes, imagine that the error in the distance measurement is due almost entirely to bias in the tape 
measure and that the error in the time measurement is due almost entirely to bias in the stopwatch.  Denote 
these errors d and t, respectively.  Then the error model can be written 

 d
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
. (46) 

For this case, we simulate pairs of errors d and t, and place each pair in Eq. (46).  An example of this 
simulation is shown below. 
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Monte Carlo Simulation for a Multivariate Measurement Involving Two Uncorrelated 
Measurement Errors.  Shown is the distribution for the error v in Eq. (46).  In the simulation, a 
distance of 100 m was measured using a tape measure and an elapsed time of 10 s was measured using 
a stopwatch.  The error in the distance measurement was assumed to be a normally distributed bias in 
the tape measure and the error in the time measurement was assumed to consist of a (uniformly 
distributed) digital resolution error.  The standard deviation of the distance measurement was set at 2.5, 
while resolution limits of ±0.2 were used for the time measurement.  The population standard deviation 
computed using the variance addition rule and small error theory is 0.2754 m/s.  The standard deviation 
computed from the simulated distribution is 0.2751 m/s. 

 

CORRELATED ERROR SOURCES 
Direct Measurements 

Let 1 and 2 represent errors involved in making a direct univariate measurement.  Then, the error model is 
again given in Eq. (43) 
 
If 1 and 2 are correlated with a correlation coefficient , then, for each simulated value of 1,  we simulate 
a value 2.  Likewise, for each simulated value of 2,  we simulate a value 1.  Since we are double-
counting, we divide by two.  The prescription is just 
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Both normal.  u1 = 1, u2 = 2, rho = 0.60 
 Simulated Sigma = 2.709560853 
 Population Sigma = 2.720294102 
 
Multivariate Measurements 

Consider the measurement of the area of a rectangular plate obtained by measuring length a and width b: 

 A ab . (48) 

Suppose that a and b are measured with the same steel ruler.  Then the length and width measurements are 
strongly correlated.  Again, for discussion purposes, imagine that the errors in the measurements are due 
almost entirely to bias in the steel ruler.  Denote these errors a and b, respectively.  Then the error model 
can be written 
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a b
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. (48) 

Let  be the correlation coefficient between the errors in measurement of a and b.  Then, for each simulated 
value of 1,  we simulate a value 2.  Likewise, for each simulated value of 2,  we simulate a value 1.  
Since we are double-counting, we divide the total by two and the error cross product by four.  The 
prescription then becomes 

   1 1
( ) ( ) ( )(

2 4A b a a b a b ba b )a               . (49) 

Suppose that the length and width measurements are made at the same time.  Then the biases in both 
measurements are equal,  = 1, and Eq. (49) becomes 

   2
A a b     . (50) 

A simulated distribution for A is shown below. 
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Monte Carlo Simulation for the Distribution of Correlated Measurement Biases.  Shown is 
the distribution for the error in the measurement of a rectangular plate of length 1.0 and width 2.0.  
In constructing the distribution, 10,000 random normal deviates were simulated from a population 
with mean zero and standard deviation 0.25.  The population standard deviation is 0.75.  The 
standard deviation computed from the simulated distribution is 0.7544. 
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