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Abstract 
Clause 5.3 of ANSI/NCSL Z540.3, "Requirements for the Calibration of Measuring and Test 
Equipment," contains a risk management requirement for cases where the results of calibration 
are employed to verify that quantities are within specified tolerances.  This requirement limits 
the probability of incorrect acceptance decisions (false accept risk) to a maximum of 2%.  Where 
the estimation of this probability is not feasible, the test uncertainty ratio (TUR) is required to be 
4:1 or greater. 
 
This paper provides the mathematical framework for computing false accept risk and gives 
guidelines for managing in-tolerance compliance decisions.  The latter includes methods for 
developing test guardbands that correspond to specified risk levels. 
 
Included in the paper is a discussion of the impact of measurement reliability and measurement 
uncertainty on false accept risk.  A brief discussion is given on the application of the fallback 4:1 
uncertainty ratio requirement. 
 
1. Background 
Measurement decision risk analysis attempts to quantify the probability of falsely accepting, as a 
result of calibration or testing, out-of-tolerance equipment parameters or falsely rejecting in-
tolerance parameters.  The former probability is called "false accept risk," while the latter is 
called "false reject risk." 
 
The subject of measurement decision risk analysis emerged from consumer/producer risk 
analysis work done in the late '40s and early '50s by Alan Eagle [1] and Frank Grubbs and Helen 
Coon [2].  In the mid '50s, the methods of Eagle, Grubbs and Coon were adapted by Jerry Hayes 
[3] to address decision risk analysis for calibration and testing.  Hayes' methods were extended 
and refined by John Ferling [4], Ken Kuskey [5], Steven Weber and Ann Hillstrom [6], and 
Howard Castrup [7] in the '70s and '80s, and were extended by Dave Deaver [8], Dennis Jackson 
[9], Castrup [10], Mimbs [11] and others in the years to follow. 
 
The methods reported in the foregoing paragraph epitomize what is referred to in this paper as 
"program-level" risk control methods.  With these methods, risks are evaluated for each 
equipment parameter of interest prior to testing or calibration by applying expected levels of unit 
under test (UUT) parameter in-tolerance probabilities and assumed calibration or test 

                                                 
1 Presented at the 2007 NCSLI Workshop & Symposium, St. Paul, MN. 
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measurement process uncertainties.  With program-level risk control, test limits called 
"guardband limits" are developed in advance and may be incorporated in calibration or test 
procedures.  Measured values observed outside guardband limits trigger some corrective action, 
such as adjustment, repair or disposal. 
 
In addition to program-level risk control, bench-level methods are available to control risks in 
response to equipment parameter values obtained during test or calibration.  With bench-level 
methods, guardbands are superfluous, since corrective actions are triggered by on-the-spot risk or 
other measurement quality metric computation. 
 
The most robust bench-level method is a Bayesian risk analysis methodology that was developed 
by Castrup [12] and Jackson [13] in the '80s and later published with the label SMPC (Statistical 
Measurement Process Control) [14]. 
 
Another bench-level approach, referred to as the "confidence level" method, evaluates the 
confidence that a measured parameter value is in-tolerance, based on the uncertainty in the 
measurement process.  This is not a risk control method in the strictest sense of the term, since 
no assumptions are made regarding the in-tolerance probability of UUT parameters prior to test 
or calibration.  More will be said on this later. 
 
Over the past few decades, accuracy ratio requirements have been incorporated in various 
standards and guidelines [15], [16] which provide some implicit control of measurement decision 
risk.  However, explicit risk control requirements have been lacking until recently.  Such an 
explicit requirement is found in the new ANSI/NCSL Z540.3-2006 standard.  Section 5.3 of this 
standard states that, where calibrations provide for verification that measured quantities are in-
tolerance, the false accept risk shall not exceed 2%. 
 
Where it is not practical to compute the false accept risk, the standard requires that the accuracy 
ratio for the measurement, referred to as a "test uncertainty ratio" or TUR, shall be greater than 
or equal to 4:1.  The efficacy of this fallback is a matter of some contention, as is discussed later 
in this paper. 
 
2. Introduction 
This paper provides false accept and false reject risk criteria for managing test and calibration 
decisions and defines these criteria mathematically.  Risk guardbanding is discussed for 
program-level risk control, and a Bayesian methodology for estimating risks, parameter biases 
and parameter in-tolerance probabilities is presented.  A confidence level method is also 
discussed. 
 
3. Risk Analysis Alternatives 
Three methods of controlling measurement decision risk are described in this section.  The first 
is a program-level control method, while the second and third are suggested as bench-level 
methods. 
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3.1 Program-level Control 
As mentioned in Section 1, with program-level control methods, risks are estimated and 
evaluated for each equipment parameter of interest prior to testing or calibration.  If the 
measurement decision risk for a given parameter is judged to be unacceptable, some program-
level change is instituted.  There are several alternatives, such as relaxing parameter tolerances, 
reducing measurement process uncertainty, shortening the UUT calibration interval, imposing 
guardband limits," etc.2 
 
3.1.1 Risk Analysis Variables 
The basic set of variables that are important for program-level measurement decision risk 
analysis is 

x - a deviation from the subject parameter's nominal or reading value 
-L1 and L2 - the lower and upper tolerance limits for the parameter, expressed as 

deviations from the parameter's nominal or reading value 
-A1 and A2 - the lower and upper “acceptance” or "guardband" limits for the 

parameter, expressed as deviations from the parameter's nominal or 
reading value 

L - the range of values between -L1 and L2 (the “performance region”) 

A - the range of values between -A1 and A2 (the “acceptance region”) 
y - a measured value of x. 

 
These variables will be employed in various probability relations.  False accept and false reject 
risks will be constructed from these relations. 
 
3.1.2 Probability Relations 
In constructing false accept and false reject definitions, we make use of the following notation 
 

( )P x ∈L  - the a priori probability that x lies within L prior to test or calibration.  This 
is the probability that the parameter to be measured is in-tolerance at the 
time of measurement. 

( )P y ∈ A  - the probability that measured values of x will be found within A.  This is 
the probability that measured parameters will be accepted as in-tolerance. 

( , )P x y∈ ∈ AL  - the probability that a parameter value lies within L and its measured value 
lies within A.  Also written as ( , )P y x∈ ∈A L .  This is the joint 
probability that a parameter will be in-tolerance and will be observed to be 
in-tolerance. 

( | )P x y∉ ∈ AL  - the probability that the value of a parameter lies outside L, given that a 
measurement of its value will lie within A. This is the conditional 
probability that a parameter will be out-of-tolerance given that it is 

                                                 
2 The development of risk-based guardbands is discussed in sections 3.1.6 - 3.1.7.2 of this paper. 
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accepted as in-tolerance. 
 
3.1.3 False Accept Risk 
There are two alternative definitions for false accept risk: 

Consumer Option (Option 1):  The probability that accepted parameters are out-of-tolerance. 

Producer Option (Option 2):  The probability that out-of-tolerance parameters will be accepted. 
 
The consumer option takes the point of view of the recipient of the calibrated or tested 
parameters.  It is the probability that delivered items will be out-of-tolerance.  The producer 
option, on the other hand, takes the point of view of the testing or calibrating agency.  In this 
view, false accept risk is the probability that an out-of-tolerance parameter will be perceived as 
being in-tolerance during testing or calibration. 
 
3.1.3.1 False Accept Risk Option 1 
Consumer Option.  In this view, the false accept risk is the probability an accepted parameter 
will be found to be out-of-tolerance.  This is the probability that a parameter value x will lie 
outside L (i.e., not within L), given that a measurement of its value was found to lie within A: 

1
( , ) ( | )

( )
( , )1

( )

P x yFA P x y
P y

P x y
P y
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3.1.3.2 False Accept Risk Option 2 
Producer Option.  In this view, the false accept risk is the probability that a parameter value x 
will lie outside L and will be measured as lying within A: 

2 ( , )
( ) ( , ).

FA P x y
P y P x y
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= ∈ − ∈ ∈
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3.1.4 Comparing False Accept Risk Options 
It is interesting to note that FA1 is larger than FA2.  This can be seen from the relation 

2
1  

( )
FAFA

P y
=

∈ A
  . 

Oddly enough, when false accept risk (or consumer's risk) is discussed in journal articles, 
conference papers and in some risk analysis software, it is FA2 that is being discussed.  This may 
be somewhat puzzling in that FA2 is not referenced to the consumer's perspective.  The reason 
for this "knee-jerk" use of FA2 is that the development of the concept of FA1 did not occur until 
the late 1970s [7].  By then, professionals working in the field had become inextricably 
entrenched in thinking in terms of FA2 exclusively. 
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3.1.5 False Reject Risk 
False reject risk is the probability that a parameter value x lying within L will be measured as 
being outside A: 

( , )
( ) ( , ).

FR P x y
P x P x y

= ∈ ∉
= ∈ − ∈ ∈

A

A

L

L L
 

3.1.6 Controlling Risks with Guardbands 
False accept and false reject risks can be controlled at the program-level by the imposition of 
guardband limits [Hutchinson], [Deaver].  The development of such limits involves additional 
probability relations. 
 
3.1.6.1 Guardband Risk Relations 
It is often useful to relate the range of acceptable values A to the range L by variables called 
guardband multipliers.  Let g1 and g2 be lower and upper guardband multipliers, respectively.  
If -L1 and L2 are the lower and upper parameter tolerance limits, and -A1 and A2 the 
corresponding acceptance limits, then 

1 1 1

2 2 2 .
A g L
A g L

=
=

 

Suppose that g1 and g2 are both < 1.  Then the acceptance region A is smaller than the 
performance region L. 
 
If A is a subset of L then  

( , ) ( , )P x y P x y∈ ∈ < ∈ ∈AL L L , 
and 

( ) ( )P y P y∈ < ∈A L . 

It is easy to see that, because ( ) / ( )P y P y∈ ∈A L  is less than ( , ) / ( , )P x y P x y∈ ∈ ∈ ∈AL L L , 
we have 
 

( , ) ( , )
( ) ( )

P x y P x y
P y P y
∈ ∈ ∈ ∈

>
∈ ∈

A
A

L L L

L
 

so that 
1, 1,FA FA<A L . 

It can also be shown that, if A < L then 

2, 2,FA FA<A L , 
and, it can easily be seen that, if A < L then 

FR FRA L > . 

So, setting the guardband limits inside tolerance limits reduces false accept risk and increases 
false reject risk.  Conversely, setting guardband limits outside tolerance limits increases false 
accept risk and reduces false reject risk. 
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3.1.7 Establishing Risk-Based Guardbands 
Guardbands can often be set to achieve a desired level of false accept or false reject risk, R.  
Cases where it is not possible to establish guardbands are those where the desired level of risk is 
not attainable even with guardband limits set to zero.  Moreover, solutions for guardbands are 
usually restricted to finding symmetric guardband multipliers, i.e., those for which g1 = g2 = g.3 
 
3.1.7.1 False Accept Risk-Based Guardbands 
False accept risk-based guardbands are established numerically by iteration.4  The iteration 
adjusts the value of a guardband multiplier g, until FA ≅ R.5  The following algorithm illustrates 
the process: 
 
Step 1:  Set g = 1. 
Step 2:  Set A1 = gL1 and A2 = gL2 
Step 3:  Compute P(y ∈ A) and P(x ∈ L, y ∈ A) 
Step 4:  Compute false accept risk FA (either FA1 or FA2, as appropriate). 
Step 5: If FA < R, go to Case 1.  If FA > R, go to Case 2 | Double.  If FA ≅ R, the process is 
complete. 
 
Case 1: FA < R 
 Set g =  g / 2  
 Repeat Steps 2 through 4 
 If FA < R, go to Case 1. If FA > R, go to Case 2 | Bisect.  If FA ≅ R, the process is complete. 
Case 2: FA > R 
 Double: Set g =  2g  
 Repeat Steps 2 through 4 
 If FA < R, go to Case 1. If FA > R, go to Case 2 | Double.  If FA ≅ R, the process is 
complete. 
 Bisect: Set g =  g + g / 2  
 Repeat Steps 2 through 4 
 If FA < R, go to Case 1. If FA > R, go to Case 2 | Bisect.  If FA ≅ R, the process is 
complete. 
 
3.1.7.2 False Reject Risk-Based Guardbands 
False reject risk-based guardbands are established in the same way as false accept risk-based 
guardbands.  The following algorithm illustrates the process: 
 
Step 1:  Set g = 1 
Step 2:  Set A1 = gL1 and A2 = gL2 
Step 3:  Compute P(x ∈ L) and P(x ∈ L, y ∈ A) 
Step 4:  Compute false reject risk FR 

                                                 
3 The subject of risk-based guardbands is discussed in detail in [17]. 
4 The bisection method is recommended.  An excellent selection of bisection algorithms is found in [18]. 
5 The condition FA ≅ R indicates that the computed FA is within some pre-specified precision of the target risk R. 
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Step 5: If FR < R, go to Case 1 | Double.  If FR > R, go to Case 2.  If FR ≅ R, the process is 
complete. 
Case 1: FR < R 
 Double: Set g =  2g  
 Repeat Steps 2 through 4 
 If FR < R, go to Case 1 | Double. If FR > R, go to Case 2.  If FR ≅ R, the process is 
complete. 
 Bisect: Set g =  g + g / 2  
 Repeat Steps 2 through 4 
 If FR < R, go to Case 1 | Bisect. If FR > R, go to Case 2.  If FR ≅ R, the process is 
complete. 
 
Case 2: FR > R 
 Set g =  g / 2 
 Repeat Steps 2 through 4 
 If FR < R, go to Case 1 | Bisect. If FR > R, go to Case 2.  If FR ≅ R, the process is complete. 
 
3.1.2 Computing Risk 
In computing risks, we use uncertainty estimates, along with a priori information, to compute the 
probabilities needed to estimate false accept and false reject risks. 
 
3.1.2.1 Computing Probabilities 
Let the value of a subject parameter be labeled x, the in-tolerance region for the parameter be 
labeled L and the probability density function (pdf) for the parameter be denoted f(x).  Then the 
in-tolerance probability P(x∈L) is written 

( ) ( )P x f x dx∈ = ∫
L

L . 

Let the measured value of x be labeled y, the acceptance region be labeled A and the joint pdf of 
x and y be denoted f(x,y), then the probability that the subject parameter is both in-tolerance and 
observed to be in-tolerance is given by 

( , ) ( , )

( ) ( | ) ,

P x y dx dy f x y

dx f x dy f y x

∈ ∈ =

=

∫ ∫

∫ ∫
A

A

A
L

L

L

 

where the function f(y|x) is the conditional pdf of obtaining a value (measurement) y, given that 
the value being measured is x. 
 
3.1.2.2 Parameter Distributions 
The normal distribution is usually assumed for the measurement reference parameter.  Several 
distributions have been found useful for the UUT parameter. 
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3.1.2.2.1 Measurement Reference Parameter 
The measurement reference parameter pdf is the conditional pdf f (y | x).  This pdf is usually 
given by 

2 2( ) / 21( | )
2

yy x

y

f y x e σ

πσ
− −= , 

where σy is the standard uncertainty in the measurement, given by 
2 2

y mte otheru uσ = + . 

In this expression, umte is the uncertainty in the measurement reference parameter bias and uother 
is the combined standard uncertainty for any remaining measurement process errors. 
 
3.1.2.2.2 UUT Parameter 
A few useful UUT parameter distributions are described below.  Others are described elsewhere 
[19].  For each distribution, the parameter µ represents either the distribution's nominal value or 
mode value. 
 
Normal Distribution 
With this distribution, the pdf for x is given by 

2 2/ 21( )
2

xx

x

f x e σ

πσ
−= , 

where σx is the a priori uncertainty in the UUT parameter bias.  In this case, the population mean 
value is equal to the mode value µ. 
 
Lognormal Distribution 
The pdf for the lognormal distribution is given by 

2
21( ) exp ln 2

2
x qf x
m qx q

λ
π λ

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪= −⎨ ⎬⎢ ⎥⎜ ⎟−− ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
. 

In this expression, λ is referred to as the "shape" parameter.  The parameter m is the distribution 
median value and the parameter q is a limiting value. 
 
In general, for a lognormally distributed variable x, we have 
 

Mode µ  
Median 2

( )m q q eλµ= + −  

Mean 
2 / 2( )x q m q eλ= + −

Variance 2 22( ) ( 1)m q e eλ λ− −  

Standard Deviation 2 2/ 2| | 1m q e eλ λ− −  
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Uniform Distribution 
The pdf for the uniform distribution is 

1 ,
( ) 2

0, otherwise .

a x a
f x a

µ⎧ − ≤ − ≤⎪= ⎨
⎪⎩

 

The parameters ± a represent minimum limiting values for the subject parameter. 
 
Exponential Distribution 
The exponential distribution is used in cases where the parameter tolerance is single-sided and 
the physical limit is equal to the mode or nominal value.  The pdf is 

( ) xf x e λλ −= . 

Student's t 
The Student's t distribution is used to compute a standard uncertainty from an expanded 
uncertainty, or vice versa, in cases where a measurement error or parameter bias is normally 
distributed and an estimate of the associated uncertainty is accompanied by a finite degrees of 
freedom.  The pdf for the t distribution is not often used explicitly. 
 
Example:  Normally Distributed Subject Parameter 
Suppose that the parameter being measured follows an a priori (pre-measurement) normal 
distribution with mean µ  and standard deviation σx.6  Then the function P(x∈L) becomes 

2 2/ 21( )
2

xx

x

P x e dxσ

πσ
−∈ = ∫

L

L . 

Since measurements y of x follow a normal distribution with standard deviation σy and mean 
equal to x, the function P(x∈L, y∈A) is written as 

2 22 2 ( ) / 2/ 21( , ) .
2

yx y xx

x y

P x y e dx e dyσσ

πσ σ
− −−∈ ∈ = ∫ ∫

L

L
A

A  

The function P(y∈A) is obtained by integrating f(x,y) over all values of x 

2 22 2

2 2

( ) /2/2

/2

1( )
2

1 ,
2

yx y xx

x y

y

P y e dx e dy

e dy

σσ

σ

πσ σ

πσ

∞ − −−

−∞

−

∈ =

=

∫ ∫

∫

A

A

A

 

where 
2 2
x yσ σ σ= + . 

Consider the case of symmetric tolerance limits and guardband limits.  Then the tolerance region 
can be expressed as ± L and the acceptance region as ± A, then the above expressions become 
                                                 
6 For the normal distribution, the mean value is equal to the mode value. 
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and 

( )

2 2/ 21( )
2

2 / 1.

A
y

A

P y e dy

A

σ

πσ
σ

−

−

∈ =

= Φ −

∫A
 

The value of P(x ∈ L, y ∈ A) is obtained by numerical integration. 
 
3.1.3 Risk Estimation Procedure 
In estimating false accept and false reject risks, we follow the basic "recipe" shown below. 

1. Establish the relevant quantities 
 The a priori subject parameter distribution. 
 The subject parameter in-tolerance probability prior to test or calibration. 
 The measurement reference parameter distribution. 
 The measurement reference parameter tolerances. 
 The in-tolerance probability for the measurement reference parameter at the time of test 

or calibration. 

2. Estimate the measurement process uncertainty. 

3. Compute the false accept and false reject risk. 

4. Evaluate risks to determine if corrective action is needed. 
 
3.2 Bench-level Control 
Bench-level control methods are those that compute metrics in response to values obtained 
during test or calibration.  Corrective action is triggered if the computed metrics are inconsistent 
with maximum allowable risk. 
 
3.2.1 Bayesian Analysis 
A method, based on Bayes' theorem, was developed in the late 1980s [12] that enabled (1) the 
analysis of false accept risk for UUT parameters, (2) the estimation of both UUT parameter and 
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reference parameter biases, and (3) the uncertainties in these biases.  The method has been 
referred to as Bayesian risk analysis or, simply, Bayesian analysis. 
 
In applying Bayesian analysis, we estimate the risk of accepting a UUT parameter based on a 
priori knowledge and on the results of measuring the parameter's value during testing or 
calibration. 
 
These results comprise what is called "post-test" or a posteriori knowledge which, when 
combined with a priori knowledge, allow us to compute the quantities of interest. 
 
3.2.1.1 Risk Analysis for a Measured Value 
The procedure for applying Bayesian analysis to estimate measurement decision risk associated 
with a measured parameter value is as follows: 

1. Assemble all relevant a priori knowledge, such as the tolerance limits for the UUT 
parameter, the parameter's statistical distribution and the in-tolerance probability for the 
parameter at the time of measurement.  This information is used to compute the UUT 
parameter bias uncertainty, i.e., the standard deviation of the UUT parameter bias 
distribution. 

2. Perform a measurement or set of measurements.  This may either consist of measuring 
the value of the UUT parameter with the measurement reference, measuring the value of 
the measurement reference with the UUT parameter or using both parameters to measure 
a common artifact. 

3. Estimate the uncertainty of the measuring process 

4. Estimate the UUT parameter and measurement reference biases using Bayesian methods. 

5. Compute uncertainties in the bias estimates. 

6. Act on the results.  Either report the biases and bias uncertainties, along with in-tolerance 
probabilities for the parameters, or adjust each parameter to correct the estimated biases. 

 
3.2.1.2 A priori (Pre-Test) Knowledge 
The a priori knowledge for a Bayesian analysis may include several kinds of information.  For 
example, if the UUT parameter is the pressure of an automobile tire, such knowledge may 
include a rigorous projection of the degradation of the tire's pressure as a function of time since 
the tire was last inflated or a SWAG estimate based on the appearance of the tire's lateral bulge.  
However a priori knowledge is obtained, is should lead to the following quantities: 

▪ An estimate of the uncertainty in the bias of the UUT parameter value.  This estimate may 
be obtained heuristically from containment limits and containment probabilities or by other 
means, if applicable [20]. 

▪ An estimate of the uncertainty in the measurement process, accounting for all error sources, 
including the bias in the measurement reference. 
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3.2.1.3 A Posteriori (Post-Test) Knowledge 
The a posteriori knowledge in a Bayesian analysis consists of the results of measurement.  As 
stated earlier, these results may be in the form of a measurement or a set of measurements.  The 
measurements may be the result of readings provided by the measurement reference from 
measurements of the UUT parameter, readings provided by the UUT parameter from 
measurements of the measurement reference, or readings provided by both parameters, taken on 
a common artifact. 
 
3.2.1.4 Bias Estimates 
Bias estimates for the UUT parameter and measurement reference can be estimated using 
Bayesian analysis.  The variables are 

sy  - The perceived value of the UUT parameter.  This may be (1) the parameter's nominal 
value, (2) the mean value of a sample of measurements taken on an artifact by the UUT 
parameter, or (3) the mean value of a sample of direct measurements of the 
measurement reference by the UUT parameter.7 

ns - Sample size of the UUT parameter measurement(s). 

ss  - UUT parameter sample standard deviation. 

sbu  - UUT parameter bias standard uncertainty. 

my  - The perceived value of the measurement reference parameter.  This may be (1) the 
reference parameter's nominal value, (2) the mean value of a sample of measurements 
taken on an artifact by the parameter, or (3) the mean value of a sample of direct 
measurements by the measurement reference of the UUT parameter value. 

nm - Sample size of the reference parameter measurements. 

ms  - Measurement reference parameter sample standard deviation. 

mbu  - Measurement reference parameter bias standard uncertainty. 
uprocess - Standard uncertainty of the measurement process, excluding parameter bias 

uncertainty. 
 
Let 

rs = us / um , 
and 

rm = um / us . 
 
Then, UUT parameter and measurement reference parameter biases can be estimated according 
to 

                                                 
7 The nominal value of a 10 VDC voltage source is an example of case (1).  The measurement of ambient air 
pressure by a pressure gage (UUT parameter) and a dead weight tester (measurement reference parameter) is an 
example of case (2).  The direct measurement of a reference mass (measurement reference parameter) by a precision 
balance (UUT parameter) is an example of case (3). 
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3.2.1.5 Bias Uncertainty Estimates 
As indicated above, the variable uprocess is a combination of uncertainties due to process error 
sources, excluding the random components and the bias uncertainties.  The quantities usb and umb 
are a priori estimates for UUT parameter and measurement reference parameter bias 
uncertainties.  They are usually computed from tolerance limit and percent in-tolerance 
information on the populations of items from which the subject unit and measuring unit are 
drawn. 
 
For instance, if the percent in-tolerance for the UUT parameter population is 100 × p %, the 
tolerance limits are -L1 and L2, and the population's probability density function is f(x,usb), then 
usb is determined by inverting the equation 

2

1

( , ) .
L

sbL
p f x u dx

−
= ∫  

For example, if x is normally distributed with mean µ, variance 2
sbu , and L1 = L2 = L, then 
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where Φ-1( . ) is the inverse normal distribution function.  Uncertainties in the parameter bias 
estimates are computed from 
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3.2.1.6 UUT Parameter In-Tolerance Probability 
Following measurement, the in-tolerance probability of a two-sided symmetrically toleranced 
UUT parameter may be estimated from the relation 
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In this expression, ± LS are the UUT parameter tolerance limits, and the function Φ(a±) is defined 
according to 

 2 / 2
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±
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−

−∞
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Extension to single-sided and asymmetrically tolerance parameters is straightforward.8 
 
3.2.1.7 Applying Bayesian Estimates 
Corrective action may be called for if Pin is less than a predetermined specified limit.  If the 2% 
requirement of Z540.3 is applied, corrective action is called for if Pin < 0.98. 
 
3.2.2 Confidence Level Method 
With this method of analysis, the confidence that a UUT parameter value lies within its tolerance 
limits is computed, given a measured value or "deviation from nominal" x.  This method is 
applied when an estimate of the UUT parameter in-tolerance probability is not feasible.  As such, 
it is not a true "risk control" method, but rather an application of the results of measurement 
uncertainty analysis. 
 
For the present discussion, assume that the measurement process error is normally distributed 
with mean x and variance 2

procu . 
 
3.2.2.1 Two-Sided Tolerances 
Suppose that the lower and upper tolerance limits for the UUT parameter are -L1 and L2, 
respectively.  Then, given a measured deviation from nominal x, the in-tolerance confidence 
level is obtained from 

                                                 
8 See, for example [21]. 
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where the function Φ is the cumulative normal distribution function. 
 
3.2.2.2 Single-Sided Upper Limits 
For cases where a "not to exceed" upper tolerance limit L applies, Pin becomes 
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3.2.2.3 Single-Sided Lower Limits 
For cases where a minimum allowable lower tolerance limit L applies, Pin becomes 
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3.2.2.4 Applying Confidence Level Estimates 
As with the Bayesian method, corrective action may be called for if Pin is less than a 
predetermined specified limit.  In keeping with the Z540.3 requirement, corrective action is 
called for if Pin < 0.98. 
 
4. The 4:1 Alternative 
As mentioned earlier, Z540.3 allows meeting a TUR requirement of 4:1 in cases where 
estimating false accept risk is not practical.  This requirement will now be discussed in some 
detail. 
 
4.1 The Z540.3 Definition 
Z540.3 defines TUR as the ratio of the span of the UUT tolerance to twice the "95%" expanded 
uncertainty of the measurement process used for calibration.  A caveat is provided in the form of 
a note stating that this requirement applies only to two-sided tolerances.  Actually, it can be 
rigorously applied only in cases where the two-sided tolerances are symmetric. 
 
Mathematically, the 4:1 Z540.3 TUR definition is stated for tolerance limits -L1 and L2 as 
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1 2TUR
2

L L
U
+

= , 

where U is equal to the standard uncertainty u of the measurement process multiplied by a 
coverage factor k 

U = ku. 
In Z540.3, k = 2. 
 
4.2 A Critique of the 4:1 Requirement 
In a telephone conversation with Jerry Hayes, the author of the  original 4:1 requirement, he said 
"I can't believe they're still using that old accuracy ratio requirement."  When Jerry developed 
this requirement, it was with the knowledge that test and calibration facilities would be hard 
pressed to estimate measurement decision risks using the computing machinery available at the 
time and needed a simple criterion that provided some control of false accept risk. 
 
In the present day, sufficient computing power is readily available and risk estimation methods 
are so well documented that it is difficult to understand why a crude 1955 risk control patch is 
still being implemented in lieu of more refined and, ultimately, more productive criteria. 
 
With this in mind, characteristics of the Z540.3 TUR deserve mention. 

· The requirement does provide a ratio expressed in terms of measurement uncertainty relative 
to UUT tolerance limits.  It is, at best, a crude risk control tool, i.e., one that does not 
controls risks to any specified level.  Moreover, in some cases, it may be superfluous.  For 
instance, what if all UUT parameters of a given manufacturer/model were in-tolerance prior 
to test or calibration?  In this case the false accept risk is zero regardless of the TUR. 

· As Mimbs points out [24], failing to account for the a priori in-tolerance probability of the 
UUT parameter is a major flaw in the TUR requirement as stated in Z540.3.9 

· The requirement is not applicable to all measurement scenarios.  It does not apply when 
tolerances are asymmetric or single-sided. 

· The requirement treats the expanded uncertainty 2u as a 95% confidence limit.  To say that 
an expanded uncertainty determined in this way is analogous to a 95% confidence level is 
like saying that an infant banging the floor with a rattle is analogous to Tiger Woods hitting 
a 5-iron. 

 
4.2.1 Equivalent Accuracy Ratios (TURs) 
If risks are under control, there is no real need to establish or meet TUR requirements.  However, 
the use of TUR as a measurement quality metric has become so ingrained that it deserves at least 
some mention. 
 
In days past, when instrument tolerances were specified as simple ± limits, it made sense to 
quantify the quality of a measurement in terms of the ratio of the UUT parameter tolerance limits 
to the measurement reference parameter tolerance limits.  This ratio was referred to as the 
                                                 
9 Guardbands consisting of multiples of measurement process uncertainty also suffer from this flaw.  If the a priori 
bias uncertainty estimate is not taken into account, such guardbands are not risk-based. 
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"accuracy ratio."  Its very simplicity guaranteed that it would be extensively used.  In fact, 
nominal accuracy ratio requirements soon emerged in Government contractual standards, e.g., 
MIL-STD-45662A [15]. 
 
In practice, not all tolerances are of the simple ± variety.  In fact, some tolerances are single-
sided, making it impossible to sensibly divide one set into the other.   
 
In addition, for some technologies, a nominal accuracy ratio requirement, such as 4:1, cannot be 
met, and simple accuracy ratio prescriptions are of no value. 
 
These considerations led to the development of something called an "equivalent accuracy ratio."  
This is the TUR that corresponds to the level of risk 
associated with a test or calibration under what are 
called "baseline" conditions. 
 
4.2.1.1 Risk Baselines 
A risk baseline is determined by specifying a nominal 
accuracy ratio (e.g., 4:1), UUT parameter and 
measurement reference parameter nominal in-
tolerance probabilities (e.g., 95%), a risk key (false 
accept or false reject), and, if the key is false accept 
risk, the risk option (consumer or producer).  Once a 
baseline is established, the computation of baseline 
risks is simple.  An example is shown in the 
accompanying graphic for a 4:1 baseline with UUT 
parameter and measurement reference parameter in-
tolerance probabilities of 95%. 
 
Once the false accept and false reject risk are computed for a measurement scenario of interest, 
an equivalent accuracy ratio is determined.  This is done by calculating the accuracy ratio that 
would be required to produce a baseline risk equal to the computed risk, given the stated 
parameter in-tolerance probabilities. 
 

 

Figure 1.  Baseline Definition.  A typical risk 
baseline.  In the case shown, the Consumer Risk 
option has been selected 
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The above figure portrays a case where the nominal accuracy ratio is only 2:1.  However, 
because of the high UUT parameter in-tolerance probability, the equivalent accuracy ratio turns 
out to be over 5:1. 
 
It should be said that the development of an equivalent accuracy ratio requires the estimation of 
measurement decision risk.  Since this is the case, the equivalent accuracy ratio is of no real use, 
in that estimated risks can be compared directly with risk criteria to determine if corrective 
action is needed.  Equivalent accuracy ratio is provided solely to help ease the evolution from 
meeting TUR requirements to meeting risk criteria. 
 
5.0 Conclusion 
Z540.3 takes a bold step in the direction of controlling measurement quality by requiring that 
measurement decision risks be held to maximum acceptable levels.  This requirement will no 
doubt find many calibration organizations in an unprepared state, since a knowledge of risk 
analysis methodology is required to meet the challenge of the new standard. 
 
Pursuant to this, three risk control methods have been described in this paper.  One method, 
referred to as a "program-level" control method, involves computing false accept risk for 
expected or assumed test or calibration measurement uncertainties and anticipated UUT in-
tolerance probabilities.  Two varieties of false accept risk were defined.10 
 
Two bench-level methods were also described.  A true risk control Bayesian method and a 
"pseudo" risk control confidence level method.  Each method involves calculations that are 

                                                 
10 While it is not explicitly stated in Z540.3 which definition is to be applied, preliminary work being done by a 
Z540.3 handbook writing committee suggests that the producer option is preferred.  This is sometimes referred to as 
"unconditional false accept risk" or UFAR. 

 
Figure 2.  Equivalent Accuracy Ratio Example.  The 
computed risk for a case where the nominal accuracy 
ratio is 2:1, but the UUT parameter in-tolerance 
probability is 97% and the measurement reference 
parameter in-tolerance probability is 99.73%.  Since 
these probabilities are higher than the baseline in-
tolerance probabilities, both the subject parameter and 
measurement reference parameter bias uncertainties are 
smaller than what they would be under baseline 
conditions.  Hence, the equivalent accuracy ratio is 
higher than the baseline accuracy ratio. 

 
Figure 3.  Equivalent Accuracy Ratio 
Example (cont.).  The equivalent accuracy ratio 
is set equal to the accuracy ratio that yields a 
baseline risk approximately equal to the 
computed risk (to the displayed level of 
precision) under baseline conditions. 
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simple enough to apply at the test or calibration bench by technicians using small footprint 
software applications. 
 
In addition, a brief discussion of TUR was given in which the drawbacks of relying on TUR as a 
measurement quality metric were presented. 
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