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1Abstract - A method is presented for estimating uncer-
tainties in cases where samples of data are unavailable.  
The method includes a formalism that provides a struc-
ture for extracting information from the measurement 
experience of scientific or technical personnel.  This 
information is used to both estimate uncertainties and 
to approximate the degrees of freedom of the estimate.  
Using these results, confidence limits are developed 
that obviate the need for arbitrary coverage factors and 
misleading expanded uncertainties. 
 

INTRODUCTION 
Historically, the uncertainty in a measured quantity has 
been equated with the standard deviation of the 
population of values that the quantity can assume.  In 
early work on the subject, estimates of this uncertainty 
had been obtained by computing the standard 
deviations of samples of measurements.  In these 
computations, the degrees of freedom variable is just 
the sample size minus one.  Roughly speaking, this 
variable represents the amount of information on which 
the standard deviation estimate is based. 
 
In the course of the development of The Guide to the 
Expression of Uncertainty in Measurement (the 
"GUM") [1], it was recognized that sample standard 
deviation estimates applied only to random variations 
experienced during measurement and did not take into 
account additional uncertainties, such as the uncertainty 
in the bias of the measuring parameter, the resolution of 
the measurement, possible operator bias, and errors due 
to environmental factors.  Unfortunately, uncertainties 
due to these error sources could rarely be estimated by 
sample standard deviations, since samples of data from 
which to obtain these estimates were unavailable. 
 
 The conclusion of the authors of the GUM was that 
uncertainty estimates in the absence of sampled data 
were to be drawn from the scientific or technical 
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experience of the analyst.  Such estimates were labeled 
"Category B" to distinguish them from "Category A" 
estimates obtained from sampled data. 
 
Beyond this, a practical methodology for obtaining 
Category B estimates was not provided.  In the years 
following the publication of the first edition of the 
GUM, methods were developed that computed 
Category B standard deviations from error containment 
limits (e.g., parameter tolerance limits) and containment 
probabilities (e.g., in-tolerance probabilities).2  These 
methods are applicable to errors arising from non-
normal as well as normal distributions and have been 
incorporated in commercially available software.3 
 
Until recently, regardless of the method used to obtain 
a Category B estimate, the estimate could not be 
rigorously applied as a statistic in computing 
confidence intervals or in statistical hypothesis testing.  
The principal reason for this is because, although an 
estimate of a population standard deviation could be 
computed, the accompanying number of degrees of 
freedom was not readily forthcoming.  Without the 
degrees of freedom, appropriate t-statistics, 
commensurate with specified confidence levels, could 
not be applied, and confidence limits could not be 
developed. 
 
What emerged instead were two artifices, the coverage 
factor and the expanded uncertainty.  The former is 
used in place of the t-statistic, and the latter consists of 
an uncertainty estimate multiplied by the coverage 
factor.  It is usually offered as an approximate 
confidence limit.4   
 
                                                           
2 See, for example, References [10] - [12]. 
3 Several software applications have been developed.  
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To make a long story short, using non-statistical 
coverage factors to obtain expanded uncertainties is not 
equivalent to applying t-statistics to obtain confidence 
limits.  In the author's experience, using nominal 
coverage factors and applying the term "expanded 
uncertainty" have led to incorrect inferences and 
expensive miscommunications.  Clearly, what is needed 
is a methodology that allows us to obtain Category B 
uncertainty estimates and degrees of freedom in such a 
way that we can return to the development of 
confidence limits and consign expanded uncertainty to 
the scrap heap.  This paper is offered as a step toward 
developing this methodology. 
 

CATEGORY B ESTIMATES 
Typically, a Category B estimate of uncertainty 
emerges as a cognitive impression based on the 
recollected experience of a technical expert.  In the 
current paradigm, all that is hoped for is an estimate of 
uncertainty without accompanying degrees of freedom 
or other statistics.  In the absence of sampled data from 
which to determine the degrees of freedom associated 
with an estimate, the number of degrees of freedom is 
customarily taken to be infinite.  
 
This practice in setting the number of degrees of 
freedom for a Category B estimate compromises its use 
as a statistic in hypothesis testing or in setting 
confidence limits.  We know that the estimate is not 
based on an "infinite" amount of knowledge.  In fact, 
we usually acknowledge that a Category B estimate is 
made from less complete knowledge than what 
typically accompanies a Category A estimate, which is 
characterized by a finite degrees of freedom.  So, the 
upshot is that the estimates in which we often have the 
least confidence are treated as if we complete 
confidence in their values.  The problem is exacerbated 
when attempting to use Welch-Satterthwaite [1, 2] or 
other means of computing the degrees of freedom for 
combined Category B and Category A estimates.  In 
these computations, when we set the Category B 
degrees of freedom to infinity, the estimates about 
which we know the least tend to dominate the end 
result. 
 
To compensate for the unavailability of rigorous 
degrees of freedom estimates, an "engineering" solution 
has been instituted that gives up on the whole idea of 
determining useful confidence intervals for Category B 
or mixed Category A,B estimates.  In this practice, 
Category B estimates and mixed Category A,B 
estimates are uniformly multiplied by a fixed coverage 
factor that, hopefully, yields limits that bear some 
resemblance to confidence limits.  In some cases, this 

practice may produce useful limits, but there is often no 
way to tell.  Unfortunately, all that can truthfully be 
said about the practice is that, at one point we have an 
uncertainty estimate and at another point we have k 
times this estimate.5  Obviously, we have added nothing 
to our knowledge or to the utility of the estimate by 
applying a fixed coverage factor. 
 
What is needed for Category B estimates, is some way 
to draw from the experience of the estimator both the 
estimate itself and an accompanying degrees of 
freedom.  It might be pointed out additionally that what 
is also needed is a means of determining the underlying 
statistical distribution for the estimate.  However, such 
determinations are rarely made even for Category A 
estimates obtained from random samples.  The usual 
assumption, which has considerable merit, is to assume 
an underlying normal distribution [3-7], which leads to 
the application of the Student's t distribution in 
computing confidence intervals.  In this paper we will 
do likewise with Category B uncertainty estimates. 
 
The approach to be taken is appropriate for the kind of 
uncertainty-related information that is available to 
technical experts.  This approach begins by formalizing 
the Category B estimation thought process.  This is 
done by viewing the process as an "experiment" 
involving independent Bernoulli trials. 
 

BERNOULLI TRIALS AND 
CONTAINMENT PROBABILITY 

Suppose we want to find the uncertainty in a variable y 
from independent Bernoulli trials that each determine 
(measure) whether the value of y lies within limits ±A.  
The limits ±A will be referred to herein as containment 
limits. 
 
We define the likelihood function for the ith trial of n 
independent trials in the usual way: 

1(1 )i ix x
iL p p −= −  

where 
1,  if 
0, otherwise,

i
i

y A
x

∈ ±�
= �
�

 , i = 1,2, ... , n, 

and, where p is the probability that y is contained 
within A.  The probability p is referred to as the 
containment probability. 
 
A likelihood function is constructed from the results of 
the n trials according to 
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The containment probability p is estimated by 
maximizing the likelihood function.  This is done by 
setting the derivative of lnL with respect to p equal to 
zero 
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This yields an estimate for p of 
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as expected.   
 
The summation in Eq. (2) is the total number of trials 
measured or observed to lie within ±A.  We denote this 
quantity x: 

1

n

i
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x x
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and write Eq. (2) as 

 xp
n

= . (3) 

 
ESTIMATING CATEGORY B 

UNCERTAINTY 
If we assume a distribution for the variable y, then Eq. 
(3) allows us to estimate the uncertainty in y, based on 
n observations with outcomes x1, x2, ... , xn.  For the 
present discussion, we will assume that y is normally 
distributed with zero mean and standard deviation uy.  
Then the uncertainty in y is determined from the 
containment limits ±A and the containment probability 
p according to 
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so that 
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p−=

Φ +
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where Φ(.) is the normal distribution function and 
Φ−1(.) is the inverse function.6  Substituting from Eq. 
(3) yields a "sample" standard deviation 
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As stated earlier, we will take an approach to estimating 
Category B uncertainties that relates to the kind of 
information that is normally available to technical 
personnel with measurement expertise, i.e., technicians 
or engineers.  Ordinarily, technicians or engineers do 
not respond sensibly to questions like "in your 
experience, what is the uncertainty in y?"  Instead, they 
tend to express their knowledge of such uncertainties in 
statements like "out of n observations on the variable y, 
approximately x have been found to lie within ±A;" or 
"y lies between ±A in approximately x out of n cases;" 
or "y lies between ±A about 100 × p percent of the 
time;" etc.  From our earlier discussion on Bernoulli 
trials, we see that such proclamations can be viewed as 
statements of the results of informal experiments 
involving Bernoulli trials. 
 
Responses of the "x out of n" variety can form the basis 
for estimation of uncertainty using Eq. (4).  If Bernoulli 
trials are systematically observed and recorded, such 
estimates may be regarded as Category A.7  If, on the 
other hand, Bernoulli trials consist of informally 
recollected impressions based on experience, then the 
estimates are Category B.  In both cases, it is possible 
to determine workable estimates of the degrees of 
freedom. 
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Category B Degrees of Freedom 
In Appendix G of the GUM, a relation is given for 
calculating the Category B degrees of freedom for 
variables that are normally distributed: 
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where uB is a Category B uncertainty estimate, and 
σ2(uB) is the variance in this estimate.  In applying Eq. 
(6), the trick is to estimate σ2(uB).  For this, the GUM is 
not much help.  The primary guidance is offered in an 
example where a value for σ (uB) is already assumed.   
 
The lack of a methodology for estimating the variance 
in uB is at the core of our difficulty in placing Category 
B estimates on a statistical footing.  The development 
of such a methodology is described below.   
 
Computation of the Variance in the 
Uncertainty 
We generalize Eq. (4) to read 
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where p is the containment probability, and 

 [ ]1( ) (1 ) / 2p pϕ −= Φ +  . (8) 

The error in uB due to errors in A and ϕ is obtained from 
Eq. (7) in the usual way 
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where ε(A) and ε(p) are errors in A and p, respectively.  
Assuming statistical independence between these 
errors, the variance in uB follows directly: 
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Dividing Eq. (10) by the square of Eq. (7), we get  
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The derivative in Eq. (11) is obtained from Eq. (8).  We 
first establish that 
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We next take the derivative of both sides of this 
equation with respect to p to get 
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and, finally, 
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Substituting Eq. (12) in Eq. (11) yields 
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Application Formats 
In applying Eq. (13), we are immediately confronted 
with the problem of obtaining uA and up.  As we will 
see, it turns out that these quantities can be estimated 
using a simple prescription.  First, however, we must 
extract technical information from the analyst.  To do 
this, we utilize two formats: 
 
Format 1:  Approximately X% (±�X%) of observed 
values have been found to lie within the limits ±A 
(±�A). 
Format 2:  Approximately x out of n values have been 
found to lie within the limits  ±A (±�A). 
 

Use of Format 1 
In using Format 1, the containment probability is given 
by 

 
100
Xp =  , (14) 

where X is the percentage of values of y observed 
within ±A.   
 
With Format 1, a technical expert is asked to provide ± 
limits for both the containment limits and the 
containment probability.  These limits are used to 
estimate uA and up.  If we assume that the errors in the 
estimates of A and p are approximately uniformly 



 

 

distributed within ±�A and ±�p = ±�X% / 100, 
respectively, then we can write8 
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Substitution in Eq. (13) gives 
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Use of Eq. (16) in Eq. (6) yields an estimate for the 
category B degrees of freedom for Format 1: 
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Note that, if �A and �p are set to zero, then Bν → ∞ . 

Use of Format 2 
With Format 2, the variance in A is obtained as in 
Format 1.  The variance in the containment probability 
p can be obtained by taking advantage of the binomial 
character of p: 

 2 (1 )
p

p pu
n
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Substitution in Eq. (13) and using Eq. (15) for the 
uncertainty in A yields 
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Note that, in cases where p = 1 or p = 0, we have 
(1 )p p− = 0.  If ∆A is also zero, then Bν → ∞ .9   

                                                           
8Use of the uniform distribution is appropriate here, 
since the ranges ∆A and ∆p can be considered 
analogous to "limits of resolution," for which the 
uniform distribution is applicable.  This obviates the 
need for estimating confidence levels for �A and �p.  
Any lack of rigor introduced by this tactic is felt as a 
third order effect and does not materially compromise 
the rigor of our final result. 

 
Obviously, where appropriate, we want to avoid cases 
where Bν → ∞ .  It therefore behooves us to attempt to 
apply whatever means we have at our disposal to obtain 
a sensible estimate for p.  The following examples 
illustrate the development and use of such estimates. 
 
Examples 
Formats 1 and 2 are incorporated in a commercially 
available software package [8] and in a freeware 
application [9].  They are exemplified in the figures 
below, taken from the freeware application.  The third 
figure presents a restatement of Format 2 that may be 
easier to use in certain circumstances. 

 
Figure 1.  Degrees of freedom estimate for a case where 
approximately 80% of values are observed as being 
within the limits ±10.  The approximate nature of the 
estimate is embodied in the secondary limits of ±15% 
and ±1.  The format shown is Format 1. 

                                                                                           
9 Actually the function exp(ϕ2) goes to infinity faster 
than (1 )p p−  goes to zero.  In these cases, it is more 
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 to be finite. 



 

 

 
Figure 2.  Degrees of freedom estimate for a case where 
approximately 16 out of 20 values are observed as being 
within the limits ± 10.  In this case, the approximate 
nature of the estimate is embodied in the secondary 
limits ±1 and in the binomial character of the estimate.  
Given the latter, the binomial uncertainty component is 
given by ∆p = p(1 - p) / n, where x = 16, n = 20 and p = 
x / n.  The format shown is Format 2. 

 
Figure 3.  Degrees of freedom estimate for a case where 
approximately 80% out of 20 values are observed as 
being within the limits ±10.  The approximate nature of 
the estimate is embodied in the secondary limits ±1 and 
in the binomial character of the estimate.  Given the 
latter, the binomial uncertainty component is given by 
∆p = p(1 - p) / n, where p = 0.80 and n = 20.  The format 
shown is a variation of Format 2. 

COMBINED CATEGORY A AND B 
UNCERTAINTIES 

The procedure for estimating and combining Category 
A and B estimates is straightforward.  We will consider 
a case where the only errors present are due to random 
variations in measured value and to the bias of the 
measuring device.10  It is assumed that these errors are 
each normally distributed with zero mean. 
 
The Uncertainty Estimates 
As indicated earlier, a Category A uncertainty estimate 
is equated with the standard deviation of a sample of 
measurements.  Letting xi represent the ith measured 
value of a sample of n measurements of a variable x, 
the standard deviation in x is given by 
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where the sample mean, x , is given by 
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In what follows, we will be developing confidence 
limits for the sample mean value, rather than an isolated 
measurement of x.  Accordingly, we apply the sampling 
distribution, which makes the Category A uncertainty 
estimate equal to sx divided by the square root of n 

 x
A x

su s
n

= = . (23) 

The variable uA represents the uncertainty due to 
random variations that occur during measurement.  
These random variations will be centered around some 
unknown "true value" µ plus whatever systematic error 
is present at the time the sample of measurements is 
taken.  In this example, we assume that this systematic 
error is due to the bias of the measuring instrument. We 
estimate the uncertainty in this bias using Eqs. (7) and 
(8) 
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where the limits ±A are the measuring parameter 
tolerance limits,  p is the measuring parameter in-
tolerance probability, and 

[ ]1( ) (1 ) / 2p pϕ −= Φ +  , 
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bias, etc. would also have to be accounted for.  



 

 

as before. 
 
The uncertainty due to the combined random and 
systematic error, εA + εB, is the square root of the 
variance of the total error 
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where ρAB is the correlation coefficient between εA and 
εΒ.  In typical measurements, these errors are 
statistically independent, and ρAB = 0.  Accordingly, we 
have 

 2 2
A Bu u u= + . (25) 

 
The Degrees of Freedom 
The degrees of freedom for the estimate uA is simply 

1A nν = − , 

while the degrees of freedom for uB is computed using 
Eq. (17) or (20) 
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Once νA and νB are determined, the degrees of freedom 
for u can be expressed using the Welch-Satterthwaite 
formula 
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The Confidence Limits 
Having computed u and ν, we can now establish 
confidence limits for the mean value given in Eq. (22).  
This is done using a t-statistic, designated tα,ν, where α 
represents a desired confidence level.11  For two-sided 
limits with confidence level of 95%, for instance, α = 
0.025.   
 
The confidence limits serve as upper and lower limits 
that contain the true value µ (estimated by the mean 
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texts and mathematics handbooks. 

value x ), with a probability equal to the confidence 
level, i.e., we say that the interval 

, ,x t u x t uα ν α νµ− ≤ ≤ +  

contains the true value with (1 - 2α) × 100% 
probability. 

 
CONCLUSION 

By obtaining values for the degrees of freedom for 
Category B uncertainty estimates, we place these 
estimates on a statistical footing.  It is through the 
medium of the degrees of freedom that the approximate 
nature of Category B estimates is quantitatively 
accounted for.  Once this has been achieved, Category 
B estimates can take their place alongside Category A 
estimates in developing confidence limits and in other 
activities where the uncertainty estimate is taken to be a 
standard deviation for an underlying error distribution.  
This is particularly evident in combining Category A 
and B estimates into a total uncertainty.  Given rigorous 
values for the degrees of freedom for both Category A 
and B components, the degrees of freedom for the 
combined total can be determined using the Welch-
Satterthwaite formula.  This means that the combined 
total may also be treated statistically. 
 
A happy consequence of this is that we can rid 
ourselves of the embarrassment of arbitrary coverage 
factors that often bear no relationship to confidence 
levels or anything else of use.  In addition, we no 
longer need to obfuscate the communication of 
uncertainty analysis results with the term "expanded 
uncertainty" to mask our inability to handle Category B 
estimates in a statistical way.  Instead, we can return to 
the use of confidence limits based on considerations of 
uncertainty and probability. 
  
The foregoing is not meant to imply that the problem of 
estimating Category B degrees of freedom has been 
solved and put to bed in this paper.  More research is 
needed in the area of extracting objective data from 
subjective recollections and in quantifying the lack of 
knowledge accompanying such data.  With regard to 
the latter, work is required to generalize the 
methodology presented herein to non-normal 
distributions (such as may pertain to asymmetric error 
limits) and to the problem of combining distributions of 
mixed character. 
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