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Abstract 

 
An uncertainty analysis methodology is described that is relevant to equipment tolerancing, analysis of 
experimental data, development of manufacturing templates and calibration of standards.  By assembling 
the methodology from basic measurement principles, controversies regarding uncertainty combination are 
avoided.  Whether applied to laboratory measurements or to product acceptance test data, the methodology 
leads to rigorous assessments of measurement accuracies and unambiguous evaluations of measurement 
decision risks. 
 

Introduction  
This paper reports an uncertainty analysis methodology that yields unambiguous results that can be applied 
directly to the assessment of measurement uncertainty.  The methodology specifically addresses the final 
three stages of a four-part uncertainty analysis process: 
 

❏ Measurement configuration description.  Identification of measurement components and 
their interrelationships. 

❏ Measurement error model development.  Identification of error components and their 
interrelationships. 

❏ Statistics development.  Construction of statistical distributions for each measurement 
error component. 

❏ Uncertainty analysis.  Analysis and assessment of measurement uncertainty. 
 
A methodology for describing measurement configurations is the topic of current research and will be 
reported in detail in the near future. 
 

                                                           
1Published in the Proceedings of the 38th Annual ISA Instrumentation Symposium, Las Vegas, April 1992. 
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Practical vs. Simple 
The title of this paper claims that the methodology described is a practical one.  This may imply that the 
methodology is simple or easy to use.  If so, the implication is unintentional.  Some of the mathematics tend 
to involve multiple terms, subscripts and superscripts and may appear a little daunting at times.  In this 
paper the term "practical" is meant to mean usable or relevant to user objectives, such as equipment 
tolerancing or decision risk management.  Simplicity and ease of use will follow once the methodology is 
embedded in user-interactive workstation applications, where the math can be largely hidden from view. 
 
Departure from Tradition 
Uncertainty analysis methodologies have traditionally been confined to techniques that are conceptually 
simple and straightforward.  These methodologies have been developed in accordance with the available 
computational capabilities of the decades before desktop workstations became widespread.  Unfortunately, 
while conventional methodologies are often easily understood, they are frequently ambiguous, restricted, 
and, sometimes useless or even dangerous.  In contrast, the methods described in this paper are 
unambiguous, completely general and lead to a better understanding of the nature and extent of 
uncertainties surrounding a given measurement situation. 
 
Accessibility to the Engineering Community 
The complexity of the methodology of this paper can be made available to the general engineering 
community through dedicated software written for today's powerful desktop computers.  What may have 
been considered to be hopelessly difficult in the past can now be made almost trivial from the standpoint of 
the analyst.  Moreover, with the evolution of the desktop computer's graphical user interface (GUI), using a 
complex methodology, such as is described herein, can even be fun. 
 
With these considerations in mind, it is the author's belief that the issue of uncertainty analysis needs to 
undergo a paradigm shift with a view toward achieving the following objectives: 
 

❏ Develop uncertainty analysis methodologies that are relevant to scientific inquiry, standards 
calibration, parameter testing, production template development and other aspects of the 
marketplace. 

❏ Implement these methodologies in menu-driven platforms with graphical user interfaces. 
 
To explore in detail the issue of methodological relevance, it will be helpful to review some background on 
why measurements are made and how analyzing uncertainty leads to understanding, interpreting, and 
managing measurement results. 
 

Why make measurements? 
A variety of reasons for making measurements can be stated.  We make measurements to discover new 
facts, verify hypotheses, transfer physical dimensions, make adjustments to physical attributes, or obtain 
information necessary to make decisions.  The varied reasons for making physical measurements are found 
in the typical high-tech product development process.  Each phase of this process involves the transfer of 
measurement information across an interface, as shown in Figure 1. 
 
The process involves R&D, where new data are taken and hypotheses are tested; prototype development, 
where dimensions are transferred, attributes are adjusted or modified and decisions are made; design, where 
prototyping experience leads to decisions on optimal specs and allowable tolerances; production, where 
molds, jigs and templates transfer physical dimensions; testing, where decisions to accept or reject parts and 
assemblies are made; and usage, where customer response to product quality, reliability and performance is 
fed back in the form of sales activity, warranty claims, legal actions, publicity, etc. 
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Figure 1.  Lateral Uncertainty Propagation.  Measurement results are transferred from stage to stage in the 
typical product development process.  Measurement uncertainties accompany each measurement transferal.  
The appropriateness of measurement accuracies and other characteristics are fed back to modify and refine 
production process approaches and parameters. 

 
Each product development interface shown in Figure 1 is supported by a measurement assurance 
infrastructure embodied in a test and calibration hierarchy.  The basic hierarchy structure is shown in Figure 
2. 
 
In a typical hierarchy, testing of a given end item attribute by a test system yields a reported in-or out-of-
tolerance indication, an adjustment if needed, and a beginning-of-period in-tolerance probability 
(measurement reliability).  Similarly, the results of calibration of corresponding test system attributes 
include reported in- or out-of-tolerance indications, attribute adjustments and beginning-of-period 
measurement reliabilities.  The same sort of data results from calibrating the supporting calibration systems 
and accompanies calibrations down through the hierarchy until a point is reached where the "unit under 
test" (UUT) of interest is a primary calibration standard. 
 

Why estimate uncertainties? 
All physical measurements are accompanied by measurement uncertainty.  Since measurement results are 
transmitted laterally across development process interfaces and vertically across support hierarchy 
interfaces, uncertainties in these results also propagate both laterally and vertically. 
 
Whether we use measurements to verify hypotheses, construct artifacts, or test products, we want to know 
how good our measurements are.  Within the context of each application, this is synonymous with knowing 
the confidence with which our measurements allow us to make decisions, adjust parameters and so on. 
   
A perhaps pessimistic, yet practical, way of looking at the situation is to say that we want to be able to 
assess the chances that negative consequences may result from applying knowledge obtained from 
measurements.  It can be shown [1-11] that the probability for negative consequences increases with the 
uncertainty associated with a measurement result.  Thus managing the risks involved in applying meas-
urement results is intimately linked with managing measurement uncertainty. 
 
Optimizing the management of measurement decision risks involves (1) linking specific values of a physical 
attribute with outcomes that may result from using the attribute and (2) estimating the probability of 
encountering these values in practice [4-9].  If high probabilities exist for unknowingly encountering 
attribute values associated with negative consequences, we say that our knowledge of the attribute's value is 
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characterized by high levels of measurement uncertainty.  If the reverse is the case, we say that 
measurement uncertainty is not significant. 
 

If our approach to uncertainty analysis aids in 
estimating the probability of encountering 
attribute values associated with negative 
consequences then we have a workable, i.e., 
practical, measurement uncertainty analysis 
methodology. 
 

Estimating Uncertainty 
Conventional Methods 
Conventional uncertainty analysis method-
ologies ordinarily employ the following steps: 
 
1) Identify all components of error. 
2) Estimate statistical or engineering 

variances for each component.2 
3) Combine variances to achieve a total 

uncertainty estimate. 
4) Estimate statistical confidence limits, 

based on the total estimate. 
 
Statistical confidence limits are usually 
determined by assuming normally distributed 
error components and invoking Student's t-
distribution [12-20]. 

 
Methodological Drawbacks 
While step one is generally advisable, certain 
ambiguities and improprieties arise in the way 
that conventional methods address steps 2 
through 4.  This is due to three main 
drawbacks of conventional methods. 

 
1. Arbitrary Uncertainty Models 
The first drawback involves difficulties in gauging the relative impact of each component of error on total 
uncertainty.  Some error components may contribute more significantly than others.  Attempting to 
circumvent this problem can lead to extremely arbitrary and unwieldy weighting schemes whose 
applicability is often questionable. 
 
Because of this, no universally applicable methodology exists for combining uncertainties.  Most 
conventional approaches involve either a linear combination of component uncertainties (standard 
deviations) or confidence limits, or a linear combination of component variances.  Linear combinations of 
uncertainties or confidence limits is ill-advised in virtually all cases.3  Such combinations lead to what are 
often called "worst case" uncertainty estimates.  They could also be called "worst guess" estimates. 
 

                                                           
2Such variances are referred to as Category A and Category B uncertainties, respectively [20]. 
3This is not the case for linear combinations of systematic measurement bias when signs are known and 
magnitudes can be estimated. 
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Adjusted Parameters
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Adjusted Parameters

CALIBRATION SYSTEM #n
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Calibration Results
Approved Use/Deployment
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Support Requirements
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Figure 2.  Vertical Uncertainty Propagation.  Measurement
accuracy requirements flow down from the end item or product
through the measurement assurance support hierarchy.  Calibrated
and/or tested attributes, accompanied by measurementuncertainty,
propagate upward.
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How uncertainties combine differs from situation to situation.  Each situation requires the development of a 
valid model showing how error components contribute to the total error of a measurement result.  In some 
cases, more than just a simple extrapolation from such a model is required.  For example, if the appropriate 
error model is a linear combination of error components, it does not necessarily follow that total uncertainty 
can be determined from a linear combination of corresponding uncertainty component variances. 
 
A large part of the problem stems from the fact that linear combinations of variances arising from various 
error components are not relevant except in cases where the error model is linear and all error components 
are statistically independent (s-independent).  Moreover, even if s-independence pertains, linear 
combinations of variances are not generally useful unless all error components follow the same sort of 
statistical distribution and the distribution is symmetrical about the mean.   
 
To get around these difficulties, the expedient of treating each error component as normally distributed is 
often employed.  This is sometimes justified on the basis of the central limit theorem [20].  General 
methodologies for combining uncertainties with mixed statistical distributions have not been forthcoming. 
 

Probability Density

UUT Attribute Value

Pre-test
distribution
σ = 1.000

Post-test
distribution
σ = 0.544

-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

 
 

Figure 3.  Pre-Test vs. Post-Test Attribute Populations.  Typical statistical distributions for attribute 
values prior to and following test screening.  The shaded areas represent probabilities for out-of-tolerance 
attributes.  The pre-test in-tolerance percentage is approximately 68%.4  The post-test curve corresponds to 
testing with a measuring system uncertainty (standard deviation) of approximately ten percent of the pre-test 
population uncertainty.  As expected, the out-of-tolerance probability is lower after test screening than before 
test screening. 

  
 
2. Misleading Variances - the Normality Assumption 
The second drawback of the conventional approach is its reliance on statistical variance as the sole measure 
of uncertainty.  Working with variances alone can produce misleading results.  This is illustrated by 
considering the distributions shown in Figures 3 and 4.  Figure 3 shows a population of product attribute 
values before and after test screening.  Since testing has rejected most of the non conforming attributes, the 
post-test distribution's tails are pulled in toward the center [4-9]. 
 

                                                           
4A not uncommon figure with products that are tested periodically as part of their in-use maintenance cycle. 
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From Figure 3, it is evident that, although the pre-test population is normally distributed, the post-test 
distribution of product attribute values is non-normal.  Accordingly, treating post-test product attribute 
values as being normally distributed could lead to erroneous inferences about their uncertainty.5 
 
This can be appreciated by considering the statistical standard deviation of post-test population values.  
Given the variance in the pre-test population and the accuracy of the test system, the standard deviation for 
the post-test distribution turns out to be approximately 0.544.  If we were engaged in sampling post-test 
attribute values as part of a process control procedure, for example, we would likely obtain an estimate 
centered around this value. 
 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Probability Density

UUT Attribute Value

Post-test
normal distribution

approximation
σ = 0.544

Post-test
distribution
σ = 0.544

 
 

Figure 4.  Post-Test Distribution Normal Approximation.  The post-test distribution is con-
trasted with a normal distribution with equal variance.  Not only are the out-of-tolerance probabili-
ties (shaded areas) significantly different, the shapes of the distributions are dissimilar. 

 
 
If we were to assume a normal distribution for the post-test population, a sampled standard deviation of 
0.544 would correspond to an in-tolerance percentage of about 93% (see Figure 4).  In contrast, the actual 
in-tolerance percentage is over 97%.  When evaluating out-the-door quality levels, the difference between 
93% and 97% in-tolerance can be astronomical.  An erroneously low 93% level can result in unnecessary 
breaks in production, an unscheduled verification of parts and production machinery, and a reevaluation of 
the production process; all of which could be avoided by not assuming normality for the product attribute 
distribution. 
 
3. Ambiguity of Application 
The third drawback with conventional methods is that they produce results that are not readily applicable.  
The use of conventional methods typically yields an estimate of the total variance of measurement values.  
What then to do with this variance?  True it can be used to calculate confidence limits (again, assuming 
normal distributions of measurements), but confidence limits are not always useful.  In general, by 
themselves they constitute weak decision variables.   
 

                                                           
5In this context, attribute uncertainty may be equated with the probability that a product item drawn at 
random from the post-test population will be in-tolerance. 
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The relationship of statistical variances or confidence limits to probabilities associated with negative 
consequences, referred to earlier, is often ambiguous.  Unless a statistical variance enables us to infer the 
statistical distribution that it characterizes, its function is primarily ornamental.  Without knowledge of this 
distribution, we are at a loss to determine the probability that parts manufactured by one source will mate 
with parts manufactured by another, or the probability that calibrated test sytems will incorrectly accept out-
of-tolerance products.  
 
Methodology Requirements 
Given these observations on conventional methods, it appears that what is needed is an uncertainty analysis 
methodology that directly generates probability estimates for attribute values.  The methodology should not 
be restricted with regard to statistical distributions of error components, nor to assumptions of s-
independence.  Moreover, it should yield results that can be used in managing measurement decision risk. 
 
Such a methodology is referred to below as the "new method." 
 

The New Method 
The new method employs an analysis procedure that differs from that followed by conventional approaches.  
The procedure it follows is 
 

1) Define the measurement mathematically. 

2) Identify all components of error for a given quantity of interest. 

3) Construct an appropriate total error model. 

4) Determine statistical distributions for each error component. 

❏ Identify all error sources for each error component. 
❏ Obtain technical information from which to identify the statistical distribution 

appropriate for each error source. 
❏ Construct a composite statistical distribution for each error component based on its 

source distributions. 

5) Develop a total error statistical distribution from the distributions for each error component. 
 
6) Compute confidence limits, expectation values, measurement decision risks, etc. using the 

total error statistical distribution. 

 
The Error Model 
The error model should describe how error components combine to produce the total error of a 
measurement result.  As an example, consider the determination of particle velocity (v) through 
measurements of time (t) and distance (d).  We first define the measurement with the familiar 
relation /v d t= .  If errors are represented by the symbol ε then, if errors in time are small compared to the 
magnitude of the time measurement itself, the appropriate error model is 

( )( )
( )

1 / 1 /

1 / / ,

d

t

d t

d t

dv
t

d d t
t
v d t

ν
εε
ε

ε ε

ε ε

++ =
+

≅ + −

≅ + −

 

and 
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1 2 ,

d t
v v

d t
ε εε

ε ε

� �≅ −� �
� �

= +
 

where 
1 /dv dε ε=  

and 
2 / .tv tε ε= −  

 
Note that the same expressions result from using the conventional Taylor series expansion for small 
measurement errors [19]: 
 

.v d t
v v
d t

∂ ∂ε ε ε
∂ ∂

� � � �= +� � � �
� � � �

 

 
In general, if the determination of a given quantity is based on a set of n measured attributes, the total error 
of the quantity can be expressed in the functional relationship 
 

 1 2

1 2

( , , , )
.

total total n

n

ε ε ε ε ε
ε ε ε

=
= + + +

�

�

 
(1)

 

 
As with all measurement errors, each of the variables iε  is composed of both process errors e p  (physical 
discrepancies between measurement results and true measurand values) and errors of perception eo  
(discrepancies between measurement results and the perception of these results): 
 ( , ) , 1,2, , .i i p oe e i nε ε= = �  (2) 
 
Steps three and four of the methodology described in this paper involve determining the statistical 
distributions for each error component and using these component distributions to form a statistical 
distribution for the total error.  Returning to the particle velocity example, the statistical distribution for vε  
can be obtained from a joint distribution for 1ε  and 2ε .  Representing this joint distribution by the 
probability density function (pdf) 1 2( , )f ε ε , the pdf for vε  can be found using 

 1 1 1( ) ( , )v vf d fε ε ε ε ε
∞

−∞
= −� . (3) 

In cases where the error components are s-independent, as is commonly the case, this expression becomes 

 1 1 1 2 1( ) ( ) ( )v vf d f fε ε ε ε ε
∞

−∞
= −� , (4) 

 
where 1( )f ⋅  and 2( )f ⋅  are the pdfs for the individual error components 1ε  and 2ε .  In this example, these 
pdfs are related to the pdfs for distance and time according to 

 1 1 1( ) ( / ) ,
d

df f d v
v εε ε=  (5) 

and 

 2 2 2( ) ( / ) ,
te

tf f t v
v

ε ε= −  (6) 

The remainder of this paper focuses on the construction of pdfs for individual error components.  As Eqs 
(1) through (6) indicate, once these pdfs are obtained, a pdf for total measurement error can be developed.  
Using the total error pdf, a description of total measurement uncertainty becomes possible. 
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To illustrate, suppose that errors in distance are normally distributed around the distance measurement with 
standard deviation σd, while time measurements are uniformly distributed within ±τ of the time 
measurement.  Then 

2 2( ) / 21( )
2

d d
d

d
d

d
f e ε σ
ε ε

π σ
− −=  

and 
1/ 2 ,

( )
0, otherwise .t

t
t

t t
fε

τ τ ε τ
ε

− ≤ ≤ +�
= �
�

 

Eqs (5) and (6) yield 
2 2

1 1( ) / 2
1 1

1

1( )
2

vf e ε σε
πσ

− −=  

where 2
1 ( / ) dv dσ σ= , and 

 
2

2 2
/ 2 , ( / )( ) ( / )( )

( )
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t v v t t v t t
f

τ τ ε τ
ε

− + ≤ ≤ − −�
= �
�

 

 
Substituting these pdfs in Eq. (4) gives 

2 2
1 1

( )

( ) / 2
1

1
( )

1 1

1( )
22

/ / ,
2

v

v

v t
t

v
v

v t
t

v v

tf e d
v

t v t v t
v

ε τ

ε σ

ε τ

ε ε
τπσ

ε τ ε τ
τ σ σ

+ +

− −

+ −

=

� �� � � �+ −= Φ − Φ� �� � � �
� �	 
 	 
� �

�
 

 
where the function Φ is the cumulative normal distribution function defined by 

2 / 21( ) .
2

x

x e dς ς
π

−

−∞

Φ = �  

 
Accounting for Process Error 
Process error ep arises from errors in the measurement system (ems), from the measuring environment (ee), 
and from the set-up and configuration of the measurement system (es): 
 

 
( , , )

.
p p ms e s

ms e s

e e e e e
e e e

=

= + +
 (7)  

 
In Eq (7), the subscripts ms, e and s refer to "measuring system," "environment," and "set up," respectively.  
Measurement system and environmental process errors are broken down into a bias (b) and a random error 
(ε).  Set-up error is conceived as constituting a bias only: 

 
.

ms ms ms

e e e

s s

e b
e b
e b

ε
ε

= +
= +
=

 (8) 

 
In discussing given measurement situations, the "true" value of the measurand (attribute being measured) 
will be denoted x and the measured value (measurement result) will be labeled y.  Thus the system measures 
the value x and returns the result y.  A measurement result returned by the measuring system can be 
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described by a statistical distribution which is conditional on both the measurand's value and on the 
measurement process errors.  Such a statistical distribution is described by the "conditional" pdf f ( y | x ,  
ep).  This function is read "f of y given x and ep."  It represents the probability of obtaining a measurement 
result y, given a true value x and a process error ep. 
 
In a typical measuring situation, the process error ep is not known (nor is the true value x), and the 
measuring individual or other "operator" (such as an automated control system) will not be able to obtain 
the function f ( y | x ,  ep)  explicitly.  Instead, what could be attempted is an estimate of a corresponding 
function f ( y | x )  that is an "average" or "expectation value" for f ( y | x ,  ep).  The probability density 
function f ( y | x )  is obtained by averaging over ranges of values accessible to ems, ee and es (the sources of 
e p ).  The averaging process is described in Appendix A. 
 
Obtaining information about ems, ee and es and constructing the functional form of f ( y | x )  is accomplished 
through a structured question and answer process to be reported in detail in a future paper.  Briefly, the 
process consists of extracting all known engineering and other technical knowledge about the attribute 
under consideration and the measuring system and environment.  In some cases, access to test and 
calibration history data bases is also involved.  Recent experience with a prototype test and calibration 
management decision support system [8,9] suggests that the process of constructing f ( y | x )  can be 
implemented in a user-interactive computer workstation environment. 
 
Accounting for Perception Error 
Once a measuring system returns a result, the result is perceived by the operator.  This perception is usually 
subject to error. Perception errors arise in a number of ways.  For example, in reading an analog meter, 
errors due to discrepancies between the operator's vantage point and the nominal meter reading position 
may arise (parallax errors).  In reading a ruler, weighing device or digital voltmeter, errors due to 
discrepancies between the measurand's value and the measuring system's nominal scale or readout points 
often occur (resolution errors).  The reader can readily imagine other examples. 
 
Thus, the perceived or "reported" result may differ from the result y returned by the measurement system.  
These differences are assumed to be distributed around the value of y and are said to be conditional on this 
value.  Thus, denoting the perceived result by the variable z, this distribution is given by the function 
f ( z | y ).  If the pdfs f ( y | x )  and f ( z | y )  can be determined, then the distribution of perceived results 
around the true value of the measurand can be constructed.  As one might suspect, this pdf is denoted 
f ( z | x ). The construction of f ( z | x )  is described in Appendix A. 
 
Measurement Uncertainty Estimation 
The pdf f ( z | x )  provides a description of the probabilities associated with obtaining perceived or reported 
values z, given that the true value being measured is x.  Both measurement process errors and perception 
errors influence the characteristics of f ( z | x ). 
 
Determination of Confidence Limits for z 
Estimating statistical confidence limits in the measurement of a quantity is a major facet of conventional 
uncertainty analysis methods.  As discussed earlier, most conventional methods (which assume normal error 
distributions) conclude by forming normal or Student's t confidence limit estimates based on measurement 
variance. 
 
The method described in this paper takes a more general tack by employing the pdf f ( z | x )  directly rather 
than by merely focusing on one of its parameters (i.e., the variance).  This permits uncertainty estimation in 
cases afflicted with non-normally distributed errors, as is shown in Appendices A and B.  Unlike 
conventional methods, statistical confidence limits for z are obtained through integration of f ( z | x )  
directly.  This does not involve the usual process of attempting to base confidence limits on some multiple 
of the standard deviation in z. 
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Estimation of the Measurand Value x 
Appendix A shows how the method reported in this paper can also be used to estimate values for the 
measurand x based on the measurement z, the process error ep  and the perception error ε0.  This feature is 
unavailable with conventional methods. 
 
Determination of Confidence Limits for the Measurand 
In addition to estimates of measurand value, Appendix A provides a prescription for obtaining upper and 
lower bounds that can be said to contain the measurand value with a given level of statistical significance.  
This is another feature of the new method that has been previously unavailable. 
 
Management of Measurement Decision Risks 
As stated earlier, if we can estimate the probability of encountering attribute values associated with negative 
consequences, then we have a practical uncertainty analysis methodology.  One application of such 
estimates is the determination of consumer and producer risk [1-7].  Consumer and producer risk can be 
determined through the use of  f ( z | x )  and the a priori distribution for x, f ( x ).  The procedure is outlined 
in Appendix A. 
 

Conclusion 
Because of its ability to unambiguously determine measurement uncertainty and to enable the effective 
management of this uncertainty in practical situations, the new method is decidedly superior to conventional 
methods. 
 
Conventional methods require less mathematical effort, but do not yield results that are generally valid.  
Moreover, the new method, by working directly with error source distributions, does not require the de-
velopment of techniques for combining uncertainties per se.  Consequently, it avoids philosophical 
difficulties that have chronically plagued conventional uncertainty analysis methodologies and have 
constituted a stumbling block to progress in this area. 
 
The proliferation of desktop computing capability throughout industry has removed the primary obstacle to 
implementing complex mathematical methods in the work environment.  Hence, there are no overriding 
practical reasons why the methodology described in this paper cannot be put to use by scientific and 
engineering personnel.  Some additional work is required, however, to bring this to fruition.  Future efforts 
are principally needed in the areas of error model development and construction of error source 
distributions. 
 
Constructing Error Models 
The development of applicable error models requires engineering knowledge of how measurements are 
made and knowledge of the sensitivity of measurement parameters to sources of error.  Constructing error 
models based on this knowledge would involve supplying information to a user-interactive desktop 
application.  The desktop application would then develop an appropriate configuration analysis model 
describing the measurement process and set-up.  Once a measurement configuration model is constructed, 
the appropriate error model follows directly. 
 
Development of generally applicable user-interactive desktop applications for modeling measurement 
configurations is currently in the progress. 
 
Constructing Source Distributions 
Once error sources are identified, their respective statistical distributions need to be determined.  For some 
error sources, such as measuring system error, these distributions can be developed from engineering 
knowledge of ranges of values accessible to measurement attributes and from the results of audits or tests or 
from calibration history [9].  The construction of other distributions requires the application of knowledge 
gained from experience (e.g., testing or calibration) with attributes of interest. 
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The prognosis for developing tools for constructing error source distributions is good.  Promising results 
have already been obtained during beta testing of a measurement decision risk management prototype 
developed by the U.S. Navy [8,9]. 
 
Generalization of the Mathematical Methods 
The methodology, as described Appendices A and B, illustrates many of its concepts by obtaining results in 
closed form or in the form of integral equations.  Implementation of the methodology would not require that 
this be done.  Interfacing the basic methodological approach with off-the-shelf mathematical analysis 
software would be sufficient to employ the methodology in a completely general way, without restrictions 
concerning error models employed or corresponding source distributions. 
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Appendix A - Construction of Component Probability 
Density Functions 
This appendix addresses the construction of pdfs for the components of error that combine to make the total 
error of Eq (1) in the text.  If the joint pdf for component errors is 1 2( , , , )nf ε ε ε� , then the pdf for the total 
error is given by 

 2 3 2 2( ) ( , , , )total n total n nf d d d fε ε ε ε ε ε ε ε ε
∞ ∞ ∞

−∞ −∞ −∞

= − − −� � � � � � . (A-1) 

Each of the error components is a function of both process errors, arising from various facets of the 
measurement process, and errors of perception, arising from the perception of measurement results.  Both 
process errors and errors of perception are discussed in this appendix in some detail. 
 
Given a functional form for the joint distribution, it can be constructed from knowledge of the individual 
pdfs of the error components.  The construction of each component pdf involves several steps: 

 Process Error: 
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❏ Development of a process error model for each error component. 
❏ Development of a pdf describing the distribution of measurement results, given specific process 

error component values. 
❏ Determination of the expectation value for the measurement results pdf. 

 Perception Error: 
❏ Development of a perception error model. 
❏ Development of a pdf describing the distribution of perceived measurement values, given a 

specific measurement result. 
❏ Determination of the expectation value for the perceived measurement values distribution. 
 

Appendix B shows how pdfs constructed using this procedure are employed to estimate measurement 
uncertainty limits, measurand expectation values and measurement decision risks. 

 

Process Error 
The Process Error Model 
From observed measurement results, we make inferences about the value of a given measurand and about 
the uncertainty in our knowledge of this value.  To develop a methodological framework for making such 
inferences, it is helpful to view the measurand as representing some deviation from a nominal or target 
value.6  In the present discussion, deviations from nominal are treated as measurement biases or errors 
whose description can be accomplished by constructing pdfs that represent their statistical distributions. 
 
Knowledge of these distributions is acquired through measurement, tempered by certain a priori knowledge 
of their makeup and of the uncertainties surrounding the measurement process. 
 
Whether the measurand is an element of a derived quantity (such as distance is an element of velocity) or 
stands alone as the quantity of interest, deviations of its true value from nominal are referred to herein as 
"error components."  Errors inherent in measurements of these components are labeled process errors. 
 
From Eqs (7) and (8), process error is given by: 

   p ms e s ms ee b b b ε ε= + + + + . (A-2) 

Development of the Measurement Results pdf 
Let the variable x represent the deviation from nominal of a measured quantity (i.e., the error component of 
the quantity).  Development of the pdf f ( y | x )  for results produced by the measuring system begins by 
viewing the measurement result within the context of a given set of process errors.  The pdf is written 

 ( | , ) ( | , , , , , )p ms e s ms ef y x e f y x b b b ε ε= . (A-3) 

Determining the Expectation Value for the Measurement Results pdf 
The pdf f ( y | x ) is found by averaging the error sources in Eq (A-3) over their respective distributions.   

1. General Case 
The general expression for performing this average is 
 

                                                           
6Examples of such nominal values are the length of a yardstick, the volume of a quart of milk, and the 
weight of a four-ounce sinker. 
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( | ) ( ) ( | , )

( ) ( | , , , , , ) .

p p p
process errors

ms e s ms e p ms e s ms e

f y x f e f y x e de

db db db d d f e f y x b b bε ε ε ε
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

=

=

�

� � � �
 (A-4) 

2. s-Independent Sources 
If the error sources are s-independent, then the joint pdf f ( y | x ,  ep) is the product of the pdfs of the source 
distributions: 
 
 ( ) ( ) ( ) ( ) ( ) ( ) .p ms e s ms ef e f b f b f b f fε ε=  (A-5) 

 
With s-independent error sources, Eq (A-4) can then be solved in a straightforward manner.  The order of 
integration is usually unimportant.  For example, we might first consider measurement uncertainty due to 
random fluctuations in the measuring environment.  These fluctuations are accounted for by averaging Eq 
(A-4) over the variable εe: 

( | , , , , ) ( ) ( | , , , , , )ms e s ms e e ms e s ms ef y x b b b d f f y x b b bε ε ε ε ε
∞

−∞
= � . 

The other error sources are averaged in the same way. 
 

The Perception Error Model 
Once the measurement result y is obtained, it is perceived by the operator to have the value z.  The 
distribution of z around y, described by the conditional pdf f ( z | y )  can usually be determined by 
engineering analysis. 
 
Determination of the pdf for Perceived Measurement Values 
Using Eq (A-4), the pdfs f z y( | ) and f y x( | ) can be used to determine the pdf for observed 
measurements of the value of the measurand: 
 

 
( | ) ( | ) ( | )

( | ) ( | , ) .p p
process error

f z x f z y f y x dy

dy de f z y f y x e

∞

−∞
∞

−∞

=

=

�

� �
 (A-6) 

 
Eq (A-6) describes a pdf for observed measurements taken on a given measurand value x.  Prior to 
measurement, the available information on this value consists of knowing that the measurand attribute was 
drawn from a population of like attributes whose values are distributed according to some pdf f ( x ) .  In 
many instances, sufficient a priori knowledge is available on this population to enable an approximate 
specification of the population's distribution prior to measurement.  To illustrate, suppose the measuring 
situation is product acceptance testing.  In this case, a priori knowledge of f ( x )  can be obtained from  
design and manufacturing considerations and from product testing history data. 
 
Armed with an a priori pdf f ( x ) , the expected distribution of observed measurements is given by 

 ( ) ( | ) ( ) ,f z f z x f x dx
∞

−∞
= �  (A-7) 

where f ( z | x )  is given in Eq (A-6). 
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Inferences Concerning Measurand Values 
From a measurement or a set of measurements, we can infer what the most likely distribution of values for 
the measurand x might be.  This is the distribution that could lead to obtaining the perceived values z from 
measurements of x.  Of course, to be precise, the measurand's value is usually a fixed, true quantity, not a 
distribution of values.  However, this quantity is unknown.  In forming an estimate of its distribution, what 
we are really trying to do is determine probabilities for incremental ranges or neighborhoods of values that 
contain the true value. 
 
The pdf f ( x | z )  for the distribution of values of x, given the observed measured values z, is obtained from 
the expression 

 ( | ) ( )( | ) .
( )

f z x f xf x z
f z

=  (A-8) 

 
The pdf f ( z | x )  is given in Eq (A-6) and the pdf f ( z )  is computed using Eq (A-7).  The a priori pdf 
f ( x )  is determined as described in the previous section.  Eq (A-8) will be used in Appendix B to determine 
confidence limits for x and to estimate the most probable value for x, given a perceived measurement z. 
 
Example:  Normally Distributed s-Independent Sources 
For s-independent error sources, Eq (A-5) is substituted into Eq (A-4).  If all error sources are normally 
distributed, performing the integration yields the result 
 

 
2 2( ) / 21( | ) ,

2
py x

p
f y x e σ

πσ
− −=  (A-9) 

where 
 2 2 2 2 2 2

ms e s ms ep b b b eεσ σ σ σ σ σ= + + + + . (A-10) 

 
If errors of perception are normally distributed, as is the case with those that stem from random cognitive 
processes (such as parallax errors), the pdf f z y( | )  can be written 

 
2 2

0

0

( ) / 21( | ) ,
2

ez yf z y e σ

επσ
− −=  (A-11) 

where the variable ε0 is the (random) perception or "observation" error.  Substitution of Eqs (A-11) and (A-
9) in Eq (A-6) yields 
 

 
2 2( ) / 21( | ) ,

2
mz x

m
f z x e σ

πσ
− −=  (A-12) 

where 
 

0

2 2 2 .m p εσ σ σ= +  (A-13) 

 
For normally distributed measurand values, the a priori pdf f ( x )  is (assuming zero population bias) 

 
2 2/ 21( ) .

2
xx

x
f x e σ

πσ
−=  (A-14) 

Using this expression with Eq (A-13) in Eq (A-7) gives the expected distribution of measured values: 

 
2 2/ 21( ) ,

2
zz

z
f z e σ

πσ
−=  (A-15) 
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where 
 2 2 2 .z m xσ σ σ= +  (A-16) 
 
Combining Eqs (A-15), (A-14) and (A-12) in Eq (A-8) gives 

 

2 2 2 2 2 2

2 2
|

( ) / 2 / 2 / 2

( ) / 2

|

( | )
2

1 ,
2

m x z

x z

z x x zz

m x

x z

x z

f x z e e e

e

σ σ σ

β σ

σ
πσ σ

πσ

− − − −

− −

=

=
 (A-17) 

where 

 2
1

1 ( / )m x
β

σ σ
=

+
 (A-18) 

and 
 |x z mσ βσ= . (A-19) 

 
From Eqs (A-9) through (A-13) it is obvious that the component pdfs obtained using the foregoing 
procedure could be calculated by recognizing that, it the error sources are normally distributed, the 
component distributions are also normal with variances equal to the sums of the variances of the error 
sources.  This is the familiar RSS result found in many treatments on uncertainty analysis [13-17, 20].  Note 
that the conditions for its validity are that error sources be both s-independent and normally distributed. 
 
For such situations, the statistical distribution construction procedure described above is pure overkill.  The 
procedure becomes more relevant (practical) in cases where one or more error sources are not normally 
distributed. 
 
Example:  Mixed Error Source Distributions 
Consider, for purposes of illustration, a case where all error sources are normally distributed except for 
perception error.  An example of such a case is one where perception uncertainty is due to random 
fluctuations in the least significant digit of a digital device readout.  In using the device, the operator obtains 
a perceived value z.  If there are k significant digits following the decimal, then the limits of uncertainty due 
to the least significant digit can be expressed according to 

ky z ρ= ± , 

where ( 1)5 10 k
kρ − += × .   

 
The measuring system readout informs the operator that the measurement result is somewhere between 

kz ρ−  and kz ρ+  with uniform probability.  The conditional distribution that applies to this uniformly 
distributed perception error is 

 
1 ,

2( | )
0, otherwise .

k k
k

y z y
f z y

ρ ρ
ρ

� − ≤ ≤ +�= �
�
�

 (A-20) 

 
Substitution of this pdf in Eq (A-12) yields 
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2 2( ) / 21( | )
2 2

1 ,
2

k p

k

z y x

zk p

k k

k p p

f z x e dy

z x z x

ρ σ

ρρ πσ

ρ ρ
ρ σ σ

+ − −

−
=

� �� � � �− + − −= Φ − Φ� �� � � �
� � � �� �	 
 	 
� �

�
 (A-21) 

where the variable pσ  is defined in Eq (A-10).  The function Φ  is the Gaussian cumulative distribution 
function. 
 
To obtain the pdf f ( z ), rather than plugging Eq (A-21) in Eq (A-7), it is more convenient to substitute Eq 
(A-6) in Eq (A-7) and perform the integration over first x then y:  

 

( ) ( | ) ( )

( | ) ( | ) ( )

1 ( | ) ( )
2

1 ,
2

k

k

z

zk

k k

k z z

f z f z x f x dx

dx dy f z y f y x f x

dy dx f y x f x

z z

ρ

ρρ

ρ ρ
ρ σ σ

∞

−∞
∞ ∞

−∞ −∞
+ ∞

− −∞

=

=

=

� �� � � �+ −= Φ − Φ� �� � � �
� �	 
 	 
� �

�

� �

� �
 (A-22) 

where zσ  is now given by 

 2 2 2
z p xσ σ σ= + . (A-23) 

The construction of the pdf f ( x | z )  follows the same procedure as with normally distributed components.  
Using Eqs (A-14), (A-21) and (A-22) in Eq (A-8), the pdf f ( x | z )  can be written  

 
2 2/ 2

( | ) ( )( | )
( )

1 ,
( , , ) 2

xxk k

p p k z x

f z x f xf x z
f z

z x z x e
z

σρ ρ
σ σ ϕ ρ σ πσ

−

=

� �� � � �− + − −= Φ − Φ� �� � � �
� � � �� �	 
 	 
� �

 (A-24) 

where zσ  is defined in Eq (A-23) and 

 ( , , ) k k
k z

z z

z zz ρ ρϕ ρ σ
σ σ

� � � �+ −= Φ − Φ� � � �
� � � �

. (A-25) 

 
Comparing Eq (A-24) with Eq (A-17) shows that, if even a single error source is non normal, the resultant 
pdf may be substantially different in character than if all sources are normally distributed.  This point will 
be returned to in Appendix B. 
 

Appendix B - Applications 
Estimating Measurement Confidence Limits 
Conventional methodologies calculate statistical confidence limits for measurements by inferring these 
limits from computed measurement variances.  Alternatively, using the methodology in this paper, statistical 
confidence limits for observed measurements can be estimated directly using the pdf f(z|x).  For a (1 - α) X 
100% confidence level, the appropriate expressions are 
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1

( | )
2

L
f z x dzα

−∞
= � , (lower limit) (B-1) 

and 

 
2

( | )
2 L

f z x dzα ∞
= � . (upper limit) (B-2) 

 

Estimating Measurand Values 
In making measurements, we are often primarily interested in ascertaining an estimate of the value of the 
measurand and in obtaining some confidence that this estimate is sufficiently accurate to suit our purposes.  
Extension of the foregoing methodology enables meeting this objective.   
 
In making this extension, we employ the pdf f x z( | )  to obtain a statistical expectation value for x, given a 
perceived measurement result z.  The relevant expression is 

 | ( | )x z xf x z dx
∞

−∞
= � . (B-3) 

 

Estimating Confidence Limits for x 
The conditional pdf f ( x | z )  can be used to find upper and lower bounds for a neighborhood of measurand 
values that contains the true value of the measurand with a specified level of confidence.  If this level of 
confidence is (1- α) × 100%, then the confidence limits L1 and L2 for x are found by solving 
 

 2

1

( | )
2

( | ) .

L

L

f x z dx

f x z dx

α ∞

−∞

=

=

�

�
 (B-4) 

 
Estimating Measurement Decision Risk 
The analysis of risks accompanying measurement decisions is a subject of current research [8-11].  In the 
course of this research, two of the most powerful indicators measurement decision risk have been found to 
be producer and consumer risk. 
 
Consumer risk is defined at the probability that measurements of out-of-tolerance attributes will be 
perceived as being in-tolerance.  Producer risk is defined as the probability that measurements of in-
tolerance attributes will be perceived as being out-of-tolerance.  Both variables are useful indicators of the 
quality or accuracy of a measuring process. 
 
If the variable A denotes the acceptable (in-tolerance) range of attribute values and its complement A  
denotes the corresponding range of out-of-tolerance values, then consumer risk (CR) and producer risk (PR) 
are calculated according to 

 
( , )
( ) ( , )

( ) ( | ) ( ) ,
A A A

CR P z A x A
P z A P z A x A

dz f z dx dz f z x f x

= ∈ ∈
= ∈ − ∈ ∈

= −� � �

 (B-5) 

and 

 
( , )
( ) ( , )

( ) ( | ) ( ) .
A A A

PR P z A x A
P x A P z A x A

dx f x dx dz f z x f x

= ∈ ∈
= ∈ − ∈ ∈

= −� � �

 (B-6) 
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Example:  Normally Distributed s-Independent Sources 
The pdfs for normally distributed s-independent sources will be employed in Eqs (B-1) through (B-6) to 
estimate measurement confidence limits, measurand bias, confidence limits for this bias, and consumer and 
producer risks accompanying measurements. 
 
1. Measurement Confidence Limits 
Substitution of Eq (A-12) in Eqs (B-1) and (B-2) gives the (1 - α) × 100% confidence limits for observed 
measurement z : 

1
1 (1 / 2)mL x σ α−= − Φ − , 

and 
1

2 (1 / 2)mL x σ α−= + Φ − , 
or, alternatively, 
 1 1(1 / 2) (1 / 2)m mx z xσ α σ α− −− Φ − ≤ ≤ + Φ − . (B-7) 

The operator 1( )−Φ ⋅  is the inverse cumulative normal function, and the measurement standard deviation 

mσ  is defined in Eq (A-13). 
 
2. Measurand Bias 
By substituting Eq (A-17) into Eq (B-3), the most likely value for the measurand, given the perceived 
measurement result z, turns out to be 
 |x z zβ= . (B-8) 
Note that, since β > 1 (unless σm = 0), the magnitude of the maximum likelihood estimate of x is larger than 
the magnitude of z.  This can be understood by recalling that the variable x is being treated as a deviation 
from nominal, and noting that normally distributed measurements tend to regress toward nominal.  With 
these considerations in mind, it can be anticipated that the maximum likelihood estimate of the true 
deviation from nominal would be larger than the perceived or measured deviation from nominal.  
 
It should be pointed out that the process of estimating a maximum likelihood value for an attribute involves 
both measuring the attribute and making a priori statements about its distribution.  If, in the development of 
Eq (A-17), a nonzero mean value had been specified in the a prior distribution of x, then the resultant 
maximum likelihood value would have been centered around the nonzero mean value (i.e., away from 
nominal). 
 
3. Measurand Confidence Limits 
Upper and lower confidence limits for the measurand are obtained by substituting f(x|z) from Eq (A-17) in 
Eq (B-4).  The result is 

 1 1
| |1 1 .

2 2x z x zz x zα αβ σ β σ− −� � � �− Φ − ≤ ≤ + Φ −� � � �
� � � �

 (B-9) 

 
4. Consumer/Producer Risk 
To simplify the discussion, assume that the acceptance region for attribute deviations from nominal, 
represented by the variable x, is symmetrical about zero, i.e., that A=[-L, L].  From Eqs (B-5) and (B-6), 
consumer risk and producer risk are given by 

 ( ) ( , )CR P z A P z A x A= ∈ − ∈ ∈ , (B-10) 
and 
 ( ) ( , )PR P x A P z A x A= ∈ − ∈ ∈ . (B-11) 

 
The component parts of these relations are easily calculated.  From Eq (A-15), 
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 ( ) 2 1 ,
z

LP z A
σ

� �
∈ = Φ −� �

� �
 (B-12) 

where zσ  is defined in Eq (A-16).  From Eq (A-12), the joint probability for both z and x lying within A is 
given by 

 
2 2/ 2

( , ) ( | ) ( )

1 1 ,
2

x

L L

L L

x

m mx

P z A x A dz dx f z x f x

L x L x e σ

σ σπσ

− −

−

∈ ∈ =

� �� � � �+ −= Φ + Φ −� �� � � �
� �	 
 	 
� �

� �
 (B-13) 

where mσ  is given in Eq (A-13).  Finally, using Eq (A-14) yields 

 ( ) 2 1.
x

LP x A
σ

� �
∈ = Φ −� �

� �
 (B-14) 

Equations (B-12) and (B-13) are substituted into Equation (B-10) to get an estimate of consumer risk.  
Equations (B-13) and (B-14) are substituted into Equation (B-11) to get the corresponding producer risk. 
 
Example:  s-independent Error Sources with Mixed Distributions 
As in Appendix A, the example for cases involving mixed distributions considered here is one in which 
perception errors are uniformly distributed, and errors from all other sources are normally distributed. 
 
1. Measurement Confidence Limits 
The same procedure is used to estimate confidence limits for mixed distribution error sources as for 
normally distributed error sources.  For uniformly distributed errors of perception, the lower and upper 
confidence limits can be obtained from 
 

 

( ) ( )

1

1

1 1 1

1

2 2
1 1

:

1 1
1 1

( ) / 2 (

( | )
2

( | ) ( | )
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2

k k

k k k

k p k

L

L
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y L y

k k
k k

k p p

L x L

f z x dz

dz dy f z y f y x
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L x L xL x L x

e e

ρ ρ

ρ ρ ρ

ρ σ ρ

α

ρ ρρ ρ
ρ σ σ

π

−∞
∞

−∞ −∞
+ +
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− + − − −

=

=
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+ −

�

� �

� � � �

2 2) / 2 .px σ− �� 

�� �� ��

 (B-15) 

and 
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ρ σ ρ

α
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∞
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�

� �

� � � �

2 2) / 2 .px σ− �� 

�� �� ��

 (B-16) 

 
Solving for L1 and L2 from Eqs (B-15) and (B-16) requires the use of numerical or graphical methods. 
 
 
2. Measurand Bias Estimate 
For the present example, the expectation value for the measurand is obtained from 
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Using Eqs (A-9), (A-14), (A-20), (A-22) and (A-23) and integrating gives 
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3. Measurand Confidence Limits 
Upper and lower confidence limits are calculated for this example by numerically or graphically solving the 
following expressions for L1 and L2 
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and 
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4. Consumer/Producer Risk 
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As with the example of normally distributed error sources, assume that the acceptance region A in Eqs (B-5) 
and (B-6) is symmetrical about zero, i.e.,  A = [-L, L].  Using Eqs (A-14), (A-21) and (A-22) yields the 
expressions 
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Contrasting Eqs (B-22) and (B-23) with Eqs (B-12) and (B-13), respectively, shows that applying the 
assumption of normality to cases with mixed error component distributions may compromise the validity of 
measurement decision risk management. 
 

Appendix C - Nomenclature 
The following are terms and variables used in this paper.  The definitions pertain to the usage of these terms 
and variables in this paper and do not necessarily reflect their general usage within given fields of study. 
 

attribute - A measurable parameter or function. 
measurement reliability - The probability that an attribute is in conformance with stated accuracy 
specifications. 
total error - The total deviation from nominal of the value of an attribute. 
error component - If an attribute is a function of one or more variables, the deviation from 
nominal of a each variable is an error component . 
s-independent - Statistical independence.  Two variables are said to be s-independent if the values 
adopted by one have no influence on the values adopted by the other. 
statistical variance - The expectation value of the square of the deviation of a quantity from its 
mean value.  A measure of the magnitude of the spread of values adopted by a variable. 
population - All items exhibiting a given measurable property. 
distribution - A mathematical expression describing the probabilities associated with obtaining 
specific values for a given attribute. 
error model - A mathematical expression describing the relationship of an error to its error 
components. 
error source - A variable that influences the value of an error component. 
confidence limits - Limits which are estimated to contain a given variable with a specified 
probability. 
expectation value - The most probable value of an attribute or variable. 
measurement decision risk - The probability of an undesirable outcome resulting from a decision 
based on measurements. 
probability density function (pdf) - A mathematical expression describing the functional 
relationship between a specific value of an attribute or variable and the probability of obtaining 
that value. 

totalε - Total error. 

iε - The ith error component of the total error. 
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e p  - Measurement process error.  Error due to the measuring system, environment 
and set-up. 

e ms  - Error due to the measuring system. 
ee  - Error due to the measuring environment. 
e s  -  Error due to the set-up and configuration of the measuring system. 
bms  - The part of measuring system error that remains fixed during a given 

measurement or set of measurements. 

msε - The part of measuring system error that varies randomly during a given 
measurement or set of measurements. 

be  - The part of measuring environment error that remains fixed during a given 
measurement or set of measurements. 

eε - The part of measuring environment error that varies randomly during a given 
measurement or set of measurements. 

bs  - Synonymous with e s . 
x - The true value of the deviation from nominal of an attribute being measured. 
y - The value returned by the measuring system for a measurement of x. 
z - The value of a measurement perceived or observed by the operator of the 

measuring system. 
f y x( | )  - The pdf for obtaining a measured value y from a measurement of x. 
f z y( | ) - The dpf for perceiving a measurement result z from a measured value y. 
f z x( | )  - The pdf for a measurement result z being perceived from a measurement of x. 
f x z( | )  - The pdf for  an attribute having a value x given that its measurement is 

perceived to be z. 
f x( ) - The a priori pdf for attribute values prior to measurement. 
f z( ) - The pdf for perceived measurements taken on an attribute population. 
L1 - Lower confidence limit. 
L2  - Upper confidence limit. 
x z|  - The most probable value for an attribute being measured, given that its 

perceived measurement value is z. 
CR - Consumer risk. 
PR - Producer risk. 
P z A( )�  - The probability that measurements of an attribute will be perceived to be in 

conformance with stated specifications. 
P x A( )�  - The probability that an attribute is in conformance with specifications prior to 

measurement. 
P z A x A( , )� �  - The probability that an attribute is in conformance with specifications and is 

perceived to be in conformance with specifications. 
( )Φ ⋅ - The cumulative normal distribution function. 

1( )−Φ ⋅ - The inverse of ( )Φ ⋅ . 

pσ - The standard deviation for measurement process errors. 

0εσ - The standard deviation for errors of perception. 

mσ - The standard deviation for perceived measurement results. 

zσ - The standard deviation for perceived measurement results for measurements 
taken on an attribute population. 
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|x zσ - The standard deviation for the estimated distribution of true attribute values 
that is most likely to produce a perceived measurement result z. 

kρ - One half the magnitude of the maximum range of perceived values that can contain 
a measurement result. 

 



 

 

 


