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Abstract 
In performing a measurement, we encounter errors or biases from a number of sources.  Such sources include 
random error, measuring parameter bias, measuring parameter resolution, operator bias, environmental factors, 
etc.  We estimate the uncertainties due to these errors either by computing a standard deviation from a sample of 
measurements or by forming an estimate based on experience.  Estimates obtained by the former method are 
labeled Type A estimates and those obtained by the latter method are called Type B estimates. 
 
This paper describes statistical distributions that can be applied to both Type A and Type B measurement errors 
and to equipment parameter biases.  Once the statistical distribution for a measurement error or bias is charac-
terized, the uncertainty in this error or bias is computed as the standard deviation of the distribution.  For Type 
A estimates, the distribution or “population” standard deviation is estimated by the sample standard deviation.  
For Type B estimates, the standard deviation is computed from limits, referred to as error containment limits 
and from probabilities, referred to as containment probabilities.  The degrees of freedom for each uncertainty 
estimate can often be determined, regardless of whether the estimate is Type A or Type B. 
 

                                                           
1 Presented at the 2001 IDW Conference, Knoxville, TN.  Revised 27 May 2004, to correct a typographical error in the cu-
bic equation for the quadratic distribution.  Revised 11 April 2007 to provide a more tractable form of the lognormal distri-
bution. 

Background 
Until the publication of the Guide to the Expression of 
Uncertainty in Measurement (GUM) [1], accrediting 
bodies or auditing agencies for test and calibration 
organizations did not tend to focus on uncertainty 
analysis requirements.  There were two main reasons 
for this: (1) a universally accepted methodology was 
not available, and (2) assessors and auditors did not 
possess the required expertise.  Since the introduction 
of the GUM, however, accrediting bodies have been 
increasingly insistent that laboratories implement pro-
cedures for uncertainty analysis and be able to demon-
strate that these procedures are being competently 
followed.  Since the publication of ISO/IEC 17025 
[2], this insistence has intensified.  This has placed 
accrediting bodies and laboratories alike in a “catch-
up” mode that has led to some hastily contrived meas-
ures, as will be discussed presently. 
 
To induce organizations to estimate uncertainties, it 
was felt necessary by some to advocate the use of 
simple algorithms that, while they were not appropri-
ate in most cases, would at least get people on the 
uncertainty analysis path.   
 
One such algorithm involves the indiscriminate use of 
the uniform distribution to compute Type B uncer-
tainty estimates.  Unfortunately, organizations that not 
only want to analyze uncertainties but also do the job 

correctly are sometimes penalized by this ill-advised 
simplification.  On one occasion, a laboratory assessor 
admitted that the uniform distribution was largely in-
appropriate but insisted that it still be employed.  His 
reasoning was that it did not matter if uncertainty es-
timates were invalid as long as everyone produced 
them in the same way! 
 
This philosophy precludes the development of uncer-
tainty estimates that can be used to perform statistical 
tests, evaluate measurement decision risks, manage 
calibration intervals, develop meaningful tolerances 
and compute viable confidence limits.  In other words, 
apart from providing a number, the uncertainty esti-
mate becomes a useless and potentially expensive 
commodity. 
 
Obviously, if viable uncertainty estimates are to be 
produced, the blind acceptance of inappropriate 
distributions is to be discouraged.  Accordingly, we 
need to elaborate on alternative distributions and 
discuss the applicability of each 
 
Introduction 
Error and Uncertainty 
It is axiomatic that the uncertainty in a value obtained 
by measurement is identical to the uncertainty in the 
measurement error.  Additionally, the uncertainty in 
the value of a toleranced parameter or a characterized 



 

 

reference standard is equal to the uncertainty in the 
parameter’s deviation from its nominal or stated value. 
 
This axiom can be stated mathematically.  The nota-
tion is the following 

X - the true value of an attribute 
x - a value obtained for the attribute by meas-

urement or the attribute’s characterized or 
nominal value 

εx - the error in measurement or deviation from a 
nominal or characterized value 

U - a mathematical operator that returns the un-
certainty in a value 

ux - the uncertainty in x 

x
uε - the uncertainty in εx. 

 
We begin by saying that 

 Measured Value = True Value  
 + Measurement Error, 

for measured quantities, and 

True Value = Nominal Value + Deviation, 

for toleranced parameters or characterized reference 
standards.  We now rewrite these expressions using 
the notation defined above 

 xx X ε= + , (1) 

for a measured attribute, and 

 xX x ε= + , (2) 

for a toleranced parameter or characterized standard.  
Using the uncertainty operator U, we obtain 

 ( ) ( ) ( )
xx x xu U x U X U uεε ε= = + = = , (3) 

for a measured attribute, and 

 ( ) ( ) ( )
xX x xu U X U x U uεε ε= = + = = , (4) 

for a toleranced parameter or characterized reference.  
In either case, the uncertainty in the value of interest is 
equal to the uncertainty in the error or deviation in the 
value. 
 
Uncertainty Definition 
We will now define the operator U.  First, however, 
we need to discuss the nature of measurement errors 
and deviations.  We begin by stating that measurement 
errors and deviations are random variables that follow 
statistical distributions. 
 
For certain kinds of error, such as random error, this is 
easily seen.  For other kinds of error, such as parame-

ter bias and operator bias, however, their random na-
ture is not so readily perceived.  What we need to bear 
in mind is that, while a particular error may have a 
systematic value that persists from measurement to 
measurement, it nevertheless comes from some distri-
bution of like errors that can be described statistically. 
 
For instance, the diameters of ball bearings emerging 
from a manufacturing process will vary to some finite 
amount from bearing to bearing.  If one such bearing 
comes into our possession, it will have a systematic 
deviation from nominal that is essentially fixed.  
However, our particular deviation was drawn at ran-
dom from a population of deviations arising from the 
manufacturing process.  Since this deviation is un-
known, we can treat it as a random variable whose 
uncertainty is a measure of the spread of deviations 
that characterize the process.  The wider this spread, 
the greater the uncertainty. 
 
A similar chain of reasoning applies to parameters 
emerging from a test or calibration process and to er-
rors in measurement. 
 
The upshot is that, whether a particular error is ran-
dom or systematic, it can still be regarded as coming 
from a distribution of errors that can be described sta-
tistically.  Moreover, the spread in this distribution is 
synonymous with the uncertainty in the error.  It turns 
out that there is an ideal statistic for quantifying this 
spread.  This statistic is the standard deviation of the 
distribution. 
 
Therefore, to define the operator U, we need to define 
the standard deviation.  First, however, we will define 
the concept of statistical variance.  Simply put, the 
variance of a distribution of errors is the distribution’s 
mean square error.  If f(x) represents the probability 
density for a population of attribute values or meas-
urement results, and µx represents the nominal or 
mean or value for the population, then the population 
variance or mean square error var(εx) is given by 
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Notice that the population variance is a statistic that 
quantifies the spread of the distribution.  That is, the 
larger the spread, the larger the variance.  At first 
glance, the variance or mean square error would seem 
to be a good quantity by which to express a popula-



 

 

tion’s uncertainty.  However, the variance is in the 
wrong units, namely, the desired units squared.  This 
is rectified by taking the square root of the variance, 
which yields the standard deviation.  Then, by Eq. (3) 
or (4) 
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So, we see that estimating the uncertainty in meas-
urement is an exercise in which we estimate the stan-
dard deviation of the measurement error.  If we have a 
sample of measurements, we can estimate the standard 
deviation due to random error in the sample using a 
straightforward expression found in statistics text-
books 
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n =

= −
− ∑ , (7) 

where n is the sample size and x  is the sample mean.2  
This is an example of a Type A estimate.  For Type B 
estimates, we work from error containment limits and 
containment probabilities.  The process is described in 
detail in the literature [4].   
 
Standard and Expanded Uncertainty 
To this point, the uncertainty in measurement has been 
equated with the standard deviation of the population 
of the measurement error.  In the GUM, this uncer-
tainty is called the standard uncertainty.  If the distri-
bution is known, and the degrees of freedom can be 
determined [4], the standard uncertainty can be used 
to develop confidence limits for an uncertainty esti-
mate.  The GUM refers to a confidence limit as an 
expanded uncertainty.3  The factor by which a stan-
dard uncertainty is multiplied to yield an expanded 
uncertainty is called the coverage factor. 
 
Unfortunately, in conversation, it is not always clear 
whether the term “uncertainty” refers to the expanded 
uncertainty or to the standard uncertainty.  In this pa-
per, unless otherwise indicated, it will refer to the 
standard uncertainty. 
 

                                                           
2 Note the formal similarity between Eq. (7) and Eq. (5). 
3 Actually, the terms “standard uncertainty” and “expanded 
uncertainty” were introduced to supersede the terms “stan-
dard deviation” and “confidence limit,” respectively, in 
cases where the degrees of freedom for an uncertainty esti-
mate could not be determined.  Before the refinement of 
methods for estimating degrees of freedom [4], this limita-
tion applied almost universally to Type B estimates, and, by 
extension to mixed Type A-B estimates. 

 
Statistical Distributions 
In obtaining a Type A uncertainty estimate, we com-
pute a standard deviation using Eq. (7).  In obtaining a 
Type B estimate, we work from a set of bounding lim-
its, referred to as error containment limits and a con-
tainment probability, which is the probability that 
errors or attribute values lie within these limits.  Any 
one of a variety of distributions may be assumed to 
represent the underlying distribution of errors or de-
viations.  In this paper, we consider the uniform, nor-
mal, lognormal, quadratic, cosine, half-cosine, U-
shaped, and the Student’s t distribution. 
 
The Uniform Distribution 
The uniform distribution is defined by the probability 
density function (pdf) 

1 ,
( ) 2

0, otherwise ,

a x a
f x a

⎧ − ≤ ≤⎪= ⎨
⎪⎩

 

where ±a are the limits of the distribution. 

0

f(x)

x
−a a0

f(x)

x
−a a  

The Uniform Distribution.  The probability of 
lying between -a and a is constant.  The 
probability of lying outside ±a is zero. 
 

 
Acceptance of the Uniform Distribution 
Applying the uniform distribution to obtaining Type B 
uncertainty estimates is a practice that has been gain-
ing ground over the past few years.  There are two 
main reasons for this: 
 
1. First, applying the uniform distribution makes it 
easy to obtain an uncertainty estimate.  If the limits ±a 
of the distribution are known, the uncertainty estimate 
is just 

 
3

au = . (8) 

In this paper, 
“uncertainty” = standard uncertainty 



 

 

It should be said that the "ease of use" advantage has 
been promoted by individuals who are ignorant of 
methods of obtaining uncertainty estimates for more 
appropriate distributions and by others who are simply 
looking for a quick solution.  In fairness to the latter 
group, they sometimes assert that the lack of specific-
ity of information required to use other distributions 
makes for crude uncertainty estimates anyway, so why 
not get your crude estimate by intentionally using an 
inappropriate distribution?   
 
At our present level of analytical development [3, 4], 
this argument does not hold water.  Since the introduc-
tion of the GUM, methods have been developed that 
systematize and rigorize the use of distributions that 
are physically realistic.  These will be discussed pres-
ently. 
 
2. Second, it has been asserted by some that the use 
of the uniform distribution is (uniformly?) recom-
mended in the GUM.  This is not true.  In fact, most of 
the methodology of the GUM is based on the assump-
tion that the underlying error distribution is normal.  
Some of the belief that the uniform distribution is 
called for in the GUM stems from the fact that several 
individuals, who have come to be regarded as GUM 
authorities, have been advocating its use.  For clarifi-
cation on this issue, the reader is referred to Section 
4.3 of the GUM. 
 
Another source of confusion is that some of the exam-
ples in the GUM apply the uniform distribution in 
situations that appear to be incompatible with its use.  
It is reasonable to suppose that much of this is due to 
the fact that rigorous Type B estimation methods and 
tools were not available at the time the GUM was pub-
lished, and the uniform distribution was an "easy out."  
As stated in item 1 above, the lack of such methods 
and tools has since been rectified. 
 
The acceptance of the uniform distribution on the ba-
sis of its use in GUM examples reminds us of a simi-
lar practice that emerged from the application of 
Handbook 52 to the interpretation of MIL-STD-
45662A.  In one example in the Handbook, a hypo-
thetical lab was being audited whose nominal operat-
ing temperature was 68° F.  Some of the 45662A audi-
tors reacted to the example by citing labs that did not 
maintain this temperature, regardless of whether it was 
appropriate for the lab's operation.  Inevitably, the 68° 
F requirement actually became institutionalized within 
certain auditing agencies. 
 

Applicability of the Uniform Distribution 
The use of the uniform distribution is appropriate un-
der a limited set of conditions.  These conditions are 
summarized by the following criteria. 
 
The first criterion is that we must know a set of mini-
mum bounding limits for the distribution. This is the 
minimum limits criterion.  Second, we must be able to 
assert that the probability of finding values between 
these limits is unity.  This is the 100% containment 
criterion.  Third, we must be able to demonstrate that 
the probability of obtaining values between the mini-
mum bounding limits is uniform.  This is the uniform 
probability criterion. 
 
Minimum Limits Criterion.  It is vital that the limits 
we establish for the uniform distribution are the mini-
mum bounding limits.  For instance, if the limits ±L 
bound the variable of interest, then so do the limits 
±2L, ±3L, and so on.  Since the uncertainty estimate 
for the uniform distribution is obtained by dividing the 
bounding limit by the square root of three, using a 
value for the limit that is not the minimum bounding 
value will obviously result in an invalid uncertainty 
estimate. 
 
This alone makes the application of the uniform dis-
tribution questionable in estimating bias uncertainty 
from such quantities as tolerance limits, for instance.  
It may be that out-of-tolerances have never been ob-
served for a particular parameter (100% containment), 
but it is unknown whether the tolerances are minimum 
bounding limits.  Some years ago, a study was con-
ducted involving a voltage reference that showed that 
values for one parameter were normally distributed 
with a standard deviation that was approximately 1/10 
of the tolerance limit.  With 10-sigma limits, it is 
unlikely that any out-of-tolerances would be observed.  
However, if the uniform distribution were used to es-
timate the bias uncertainty for this item, based on tol-
erance limits, the uncertainty estimate would be nearly 
six times larger than would be appropriate.  Some 
might claim that this is acceptable, since the estimate 
can be considered a conservative one.  That may be.  
However, it is also a useless estimate.  This point will 
be elaborated later. 
 
A second difficulty we face when attempting to apply 
minimum bounding limits is that such limits can rarely 
be established on physical grounds.  This is especially 
true when using parameter tolerance limits.  It is virtu-
ally impossible to imagine a situation where design 
engineers have somehow been able to precisely iden-
tify the minimum limits that bound values that are 
physically attainable.  If we add to this the fact that 
tolerance limits are often influenced by marketing 



 

 

rather than engineering considerations, equating toler-
ance limits with minimum bounding limits becomes a 
very unfruitful and misleading practice. 
 
100% Containment Criterion.  By definition, the 
establishment of minimum bounding limits implies the 
establishment of 100% containment.  It should be said 
however, that an uncertainty estimate may still be ob-
tained for the uniform distribution if a containment 
probability less that 100% is applied.  For instance, 
suppose the containment limits are given as ±L and 
the containment probability is stated as being equal to 
some value p between zero and one.  Then, if the uni-
form probability criterion is met, the limits of the dis-
tribution are given by 

 ,La L a
p

= ≤ . (9) 

If the uniform probability criterion is not met, how-
ever, the uniform distribution would not be applicable, 
and we should turn to other distributions.   
 
Uniform Probability Criterion.  As discussed above, 
establishing minimum containment limits can be a 
challenging prospect.  Harder still is finding real-
world measurement error distributions that demon-
strate a uniform probability of occurrence between 
two limits and zero probability of occurrence outside 
these limits.  Except in very limited instances, such as 
are discussed in the next section, assuming a uniform 
probability is just not physically realistic.  This is true 
even in some cases where the distribution would ap-
pear to be applicable. 
 
For example, a conjecture has recently been advanced 
that the distribution of parameters immediately fol-
lowing test or calibration can be said to be uniform.  
While this seems reasonable at face value, it turns out 
not to be the case.  Because of false accept risk (con-
sumer’s risk), such distributions range from approxi-
mately triangular to having a "humped" appearance 
with rolled-off shoulders. 
 
As to whether we can treat parameter tolerance limits 
as bounds that contain values with uniform probabil-
ity, we must imagine that, not only has the instrument 
manufacturer managed to miraculously ascertain 
minimum bounding limits, but has also juggled phys-
ics to such an extent as to make the parameter value's 
probability distribution uniform between these limits 
and zero outside them.  This would be a truly amazing 
feat of engineering for most toleranced quantities — 
especially considering the marketing influence men-
tioned earlier. 
 

Cases that Satisfy the Criteria 
Digital Resolution Uncertainty.  We sometimes need 
to estimate the uncertainty due to the resolution of a 
digital readout.  For instance, a three-digit readout 
might indicate 12.015 V.  If the device employs the 
standard round-off practice, we know that the dis-
played number is derived from a sensed value that lies 
between 12.0145 V and 12.0155 V.  We also can as-
sert to a very high degree of validity that the value has 
an equal probability of lying anywhere between these 
two numbers.  In this case, the use of the uniform dis-
tribution is appropriate, and the resolution uncertainty 
is  

0.0005 V 0.00029 V
3Vu = = . 

RF Phase Angle.  RF power incident on a load may 
be delivered to the load with a phase angle θ between 
-π and π.  In addition, unless there is a compelling 
reason to believe otherwise, the probability of occur-
rence between these limits is uniform.  Accordingly, 
the use of the uniform distribution is appropriate.  This 
yields a phase angle uncertainty estimate of 

1.814
3

uθ
π

= ≅ . 

It is interesting to note that, given the above, if we 
assume that the amplitude of the signal is sinusoidal, 
the distribution for incident voltage is the U-shaped 
distribution. 
 
Quantization Error.  The potential drop (or lack of a 
potential drop) sensed across each element of an A/D 
Converter sensing network produces either a "1" or 
"0" to the converter.  This response constitutes a "bit" 
in the binary code that represents the sampled value.  
For ladder-type networks, the position of the bit in the 
code is determined by the location of its originating 
network element.   
 
Even if no errors were present in sampling and sens-
ing the input signal, errors would still be introduced 
by the discrete nature of the encoding process.  Sup-
pose, for example, that the full scale signal level (dy-
namic range) of the A/D Converter is a volts.  If n bits 
are used in the encoding process, then a voltage V can 
be resolved into 2n discrete steps, each of size a/2n.  
The error in the voltage V is thus 

( ) ,
2n
aV V mε = −  

where m is some integer determined by the sensing 
function of the D/A Converter.   
 



 

 

The containment limit associated with each step is 
one-half the value of the magnitude of the step.  Con-
sequently, the containment limit inherent in quantizing 
a voltage V is (1/2)(a/2n), or a/2n+1.  This is embodied 
in the expression 

1 .
2quantized sensed n

aV V += ±  

The uncertainty due to quantization error is obtained 
from the containment limits and from the assumption 
that the sensed analog value has equal probability of 
occurrence between these limits: 

1/ 2 .
3

n

V
au

+

=  

 
Signal Quantization.  The sampled signal points are quan-
tized in multiples of a discrete step size. 
 
Development of Expanded Uncertainty Limits 
NIST Technical Note 1297 [6] documents the uncer-
tainty analysis policy to be followed by NIST.  In this 
policy, expanded uncertainty limits for Type B and 
mixed estimates are obtained by multiplying the un-
certainty estimate by a fixed “k-factor” equal to two.  
Assuming an underlying normal distribution, this pro-
duces limits that are roughly analogous to 95% confi-
dence limits.  The advisability of this practice is de-
batable, but this is the subject of a separate discussion.  
For the present, we consider what results from the 
practice when estimating an uncertainty for a case 
where the underlying distribution is assumed to be 
uniform. 
 
Since the uncertainty is estimated by dividing the 
distribution minimum bounding limit by the square 
root of three, multiplying this estimate by two yields 
expanded uncertainty limits that are outside the 
distribution’s minimum bounding limits.  To be spe-
cific, these limits equate to approximately 115% 
containment probability, which is nonsense. 
 

One way of reconciling the practice is to state that the 
underlying distribution is actually normal, or ap-
proximately normal, and the uniform distribution is 
used merely as an artifice to obtain an estimate of the 
distribution's standard deviation.  This is a somewhat 
amazing statement.  If the underlying distribution is 
normal, why not obtain the uncertainty estimate using 
that distribution in the first place?  4 
 
It can be shown that using the uniform distribution as 
a tool for estimating the uncertainty in a normally dis-
tributed quantity corresponds to assuming a normal 
distribution with a 91.67% containment probability.  
For organizations that maintain a high in-tolerance 
probability at the unit level, we often see or can sur-
mise 98% or better in-tolerance probabilities at the 
parameter level.  Consequently, for these cases, use of 
the uniform distribution produces uncertainty esti-
mates that are at least 35% larger than what is appro-
priate. 
 
As for those who find this acceptable on the basis of 
conservatism, consider the U.S. Navy's end-of-period 
reliability target of 72% for general purpose items.  
For single-parameter items, if the true underlying dis-
tribution is normal, use of the uniform distribution can 
produce uncertainty estimates that are only about 62% 
of what they should be.  So much for conservatism.  
 
The Normal Distribution 
When obtaining a Type A estimate, we compute a 
standard deviation from a sample of values.  For ex-
ample, we estimate random uncertainty by computing 

                                                           
4 One recommendation that the reader may encounter is that, 
if all that is available for an error source or parameter devia-
tion is a set of bounding limits, without any knowledge of 
the nature of the error distribution and with no information 
regarding a containment probability, then the uniform distri-
bution should be assumed.  There are two points that should 
be made concerning this recommendation.   
 
First, after a little reflection on the difficulty of obtaining 
minimum containment limits without knowledge of a con-
tainment probability, we can see that the recommendation 
not advisable.  The prudent path to follow is to simply put 
some effort into obtaining a containment probability esti-
mate and ascertaining a most likely underlying distribution.  
There is really no way around this.  Moreover, the author 
has yet to observe an uncertainty analysis problem where 
this could not be done. 
 
The second point is that, experienced technical personnel 
nearly always know something about what they are measur-
ing and what they are measuring it with.  Except for the 
cases described above, it is difficult to imagine a scenario 
where an experienced engineer or technician would know a 
set of bounding limits and nothing else. 



 

 

the standard deviation for a sample of repeated meas-
urements of a given value.  We also obtain a sample 
size.  The sample standard deviation, equated with the 
random uncertainty of the sample, is an estimate of the 
standard deviation for the population from which the 
sample was drawn.  Except in rare cases, we assume 
that this population follows the normal distribution. 
 
This assumption, allows us to easily obtain the de-
grees of freedom and the sample standard deviation 
and to construct confidence limits, perform statistical 
tests, estimate measurement decision risk and to rigor-
ously combine the random uncertainty estimate with 
other Type A uncertainty estimates. 
 
Why do we assume a normal distribution?  The pri-
mary reason is because this is the distribution that 
either represents or approximates what we frequently 
see in the physical universe.  It can be derived from 
the laws of physics for such phenomena as the diffu-
sion of gases and is applicable to instrument parame-
ters subject to random stresses of usage and handling.  
It is also often applicable to equipment parameters 
emerging from manufacturing processes. 

f(x)

x
µx

f(x)

x
µx  

The Normal Distribution.  Shown is a case where the 
population mean µ is located far from a physical limit 0.  In 
such cases, the normal distribution can be used without 
compromising rigor. 
 
An additional consideration applies to the distribution 
we should assume for a total error or deviation that is 
composed of constituent errors or deviations.  There is 
a theorem called the central limit theorem that demon-
strates that, even though the individual constituent 
errors or deviations may not be normally distributed, 
the combined error or deviation is approximately so. 
 
An argument has been presented against the use of the 
normal distribution in cases where the variable of in-
terest is restricted, i.e., where values of the variable 
are said to be bound by some physical limit.  This 
condition notwithstanding, the normal distribution is 
still widely applicable in that, for many such cases, the 
physical limit is located far from the population mean. 
 

In cases where this is not so, other distributions, such 
as the  lognormal distribution can be applied. 
 
Uncertainty Estimates 
In applying the normal distribution, an uncertainty 
estimate is obtained from containment limits and a a 
containment probability.  The use of the distribution is 
appropriate in cases where the above considerations 
apply and the limits and probability are at least ap-
proximately known. 
 
The extent to which this knowledge is approximate 
determines the degrees of freedom of the uncertainty 
estimate [4, 7].  The degrees of freedom and the un-
certainty estimate can be used in conjunction with the 
Student's t distribution (see below) to compute confi-
dence limits. 
 
Let ±a represent the known containment limits and let 
p represent the containment probability.  Then an es-
timate of the standard deviation of the population of 
errors or deviations is obtained from 
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, (10) 

where Φ-1(.) is the inverse normal distribution func-
tion.  This function can be found in statistics texts and 
in popular spreadsheet programs.   
 
If only a single containment limit is applicable, such 
as with single-sided tolerances, the appropriate ex-
pression is 

 
( )1

au
p−=

Φ
. (11) 

 
The Lognormal Distribution 
The lognormal distribution can often be used to esti-
mate the uncertainty in equipment parameter bias in 
cases where the tolerance limits are asymmetric.  It is 
also used in cases where a physical limit is present 
that lies close enough to the nominal or mode value to 
skew the parameter bias pdf in such a way that the 
normal distribution. is not applicable. 
 
The pdf is given by 

2
21( ) exp ln 2

2
x qf x
m qx q

σ
πσ

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪= −⎨ ⎬⎢ ⎥⎜ ⎟−− ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
, 

where q is a physical limit for x, m is the population 
median and µ is the population mode.  The variable σ 
is not the population standard deviation.  It is referred 



 

 

to as the "shape parameter."  The accompanying 
graphic shows a case where µ = 10, 9.6207q = , σ = 
0.52046, and m = 10.8011.  The computed standard 
deviation for this example is 0.3176u = . 

µq
x

f(x)

 
The Lognormal Distribution.  Useful for describing 
distributions for parameters constrained by a physical limit 
or possessing asymmetric tolerances. 
 
Uncertainty estimates (standard deviations) for the 
lognormal distribution are obtained by numerical 
iteration.  To date, the only known applications that 
perform this process are UncertaintyAnalyzer [3] and 
AccuracyRatio [5]. 
 
The Triangular Distribution 
The triangular distribution has been proposed for use 
in cases where the containment probability is 100%, 
but there is a central tendency for values of the vari-
able of interest [1].  The triangular distribution is the 
simplest distribution possible with these characteris-
tics. 

0-a a

f(x)

x
 

The Triangular Distribution.  A distribution that 
sometimes applies to parameter values immediately 
following test or calibration. 

 
The pdf for the distribution is 

2

2

( ) / , 0

( ) ( ) / , 0
0, otherwise.
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The standard deviation for the distribution is obtained from 

 
6

au = . (12) 

Like the uniform distribution, using the triangular 
distribution requires the establishment of minimum 
containment limits ±a.  The same reservations apply 
in this regard to the triangular distribution as to the 
uniform distribution.  
 
In cases where a containment probability p < 1 can be 
determined for limits ±L, where L < a, the limits of the 
distribution are given by 

,
1 1

La L a
p

= ≤
− −

. 

Apart from representing post-test distributions under 
certain restricted conditions, the triangular distribution 
has limited applicability to physical errors or devia-
tions.  While it does not suffer from the uniform prob-
ability criterion, as does the uniform distribution, it 
nevertheless displays abrupt transitions at the bound-
ing limits and at the zero point, which are physically 
unrealistic in most instances.  In addition, the linear 
increase and decrease in behavior is somewhat fanci-
ful for a pdf. 

 
The Quadratic Distribution 
A distribution that eliminates the abrupt change at the 
zero point, does not exhibit unrealistic linear behavior 
and satisfies the need for a central tendency is the 
quadratic distribution.  This distribution is defined by 
the pdf 

23 1 ( / )
( ) ,4

0 , otherwise

x a
f x a x aa

⎧ ⎡ ⎤−⎪ ⎣ ⎦= − ≤ ≤⎨
⎪⎩

 

where ±a are minimum bounding limits.  The standard 
deviation for this distribution is determined from 

 ,
5

au =  (13) 

i.e., about 77% of the standard deviation estimate for 
the uniform distribution. 
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The Quadratic Distribution.  Exhibits a central 
tendency without discontinuities and does not assume 
linear pdf behavior. 

 
For a containment probability p and containment lim-
its ±L, the minimum bounding limits ±a are obtained 
from 

211 2cos arccos(1 2 ) 1 1
2 3
La p p
p
⎛ ⎞⎡ ⎤= + − − < <⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

. 

The Cosine Distribution 
While the quadratic distribution eliminates disconti-
nuities within the bounding limits, it rises abruptly at 
the limits.  Although the quadratic distribution has 
wider applicability than either the triangular or uni-
form distribution, this feature nevertheless diminishes 
its physical validity.  A distribution that overcomes 
this shortcoming, exhibits a central tendency and can 
be determined from minimum containment limits is 
the cosine distribution.  The pdf for this distribution is 
given by 

1 1 cos
( ) ,2

0 , otherwise

x
f x a x aa a

π⎧ ⎡ ⎤⎛ ⎞+⎪ ⎢ ⎥⎜ ⎟= − ≤ ≤⎝ ⎠⎨ ⎣ ⎦
⎪
⎩

. 

The uncertainty is obtained from the expression 

 2
61

3
au

π
= − , (14) 

which translates to roughly 63% of the value obtained using 
the uniform distribution. 

f(x)

x
a-a 0  

The Cosine Distribution.  A 100% containment distribution 
with a central tendency and lacking discontinuities. 
 
Solving for a when a containment probability and 
containment limits ±L are given requires applying numerical 
iterative method to the expression 

1 sin( ) 0, / ;x p x x L a L aπ
π

− + = ≡ ≤ . 

The solution algorithm has been implemented in the 
same software alluded to in the discussion on the 
quadratic distribution.  It yields, for the ith iteration, 

1 /i ix x F F− ′= − , 
where 

1 sin( )F x p xπ
π

= − +  

and 
1 cos( )F xπ′ = + . 

The Half-Cosine Distribution 
The half-cosine distribution is used in cases where the 
central tendency is not as pronounced as when normal 
or the cosine distribution would be appropriate.  In 
this regard, it resembles the quadratic distribution 
without the discontinuities at the distribution limits.  
The pdf is 

cos
( ) ,4 2

0 , otherwise

x
f x a x aa a

π π⎧ ⎛ ⎞
⎪ ⎜ ⎟= ≤ ≤⎝ ⎠⎨
⎪
⎩

. 

If the minimum limiting values ±a are known, the 
uncertainty is obtained from the expression 
 

 21 8/u aπ= − . (15) 

If containment limits ±L and a containment probabil-
ity p are known, the limiting values may be obtained 
from the relation 

1 ,
2sin ( )

La L a
p

π
−= ≤ . 
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The Half-Cosine Distribution.  Possesses a central 
tendency but exhibits a higher probability of occurrence near 
the minimum limiting values than either the cosine or the 
normal distribution. 
 
The U Distribution 
The U distribution applies to sinusoidal RF signals incident 
on a load.  It has the pdf 

 2 2

1 ,
( )

0, otherwise ,

a x a
f x a xπ

⎧ − < <⎪= ⎨ −
⎪
⎩

  

where a represents the maximum signal amplitude.  
The uncertainty in the incident signal amplitude is 
estimated according to 

 
2

au = . (16) 
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The U Distribution.  The distribution is the pdf for sine 
waves of random phase incident on a plane. 
 
If containment limits ±L and a containment probabil-
ity p are known, the parameter a can be computed 
according to 

( )
,

sin / 2
La L a
pπ

= ≤ . 

 
The Student's t Distribution 
If the underlying distribution is normal, and a Type A 
estimate and degrees of freedom are available, confi-

dence limits for measurement errors or parameter de-
viations may be obtained using the Student's t distribu-
tion.  This distribution is available in statistics text-
books and popular spreadsheet applications.  Its pdf is 

2 ( 1) / 2

1
2( ) (1 / )

2

f x x ν

ν

ν
νπν

− +

+⎛ ⎞Γ⎜ ⎟
⎝ ⎠= +

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

, 

where ν is the degrees of freedom and Γ(.) is the 
gamma function. 
 
The degrees of freedom quantifies the amount of 
knowledge used in estimating uncertainty.  This 
knowledge is incomplete if the limits ±a are approxi-
mate and the containment probability p is estimated 
from recollected experience.  Since the knowledge is 
incomplete, the degrees of freedom associated with a 
Type B estimate is not infinite.  If the degrees of free-
dom variable is finite but  unknown, the uncertainty 
estimate cannot be rigorously used to develop confi-
dence limits, perform statistical tests or make deci-
sions.  This limitation has often precluded the use of 
Type B estimates as statistical quantities and has led 
to such discomforting artifices as fixed coverage fac-
tors.   

f(x)

x
0  

Student's t Distribution.  Shown is the pdf for 10 
degrees of freedom. 

 
Fortunately, the GUM provides an expression for ob-
taining the approximate degrees of freedom for Type 
B estimates.  However, the expression involves the 
use of the variance in the uncertainty estimate, and a 
method for obtaining this variance has been lacking 
until recently [4].  A rigorous method for obtaining 
this quantity has been implemented in commercially 
available software [3] and in a freeware application 
[7]. 
 
Once the degrees of freedom has been obtained, the 
Type B estimate may then be combined with other 
estimates and the degrees of freedom for the combined 



 

 

uncertainty can be determined using the Welch-
Satterthwaite relation [1].  If the underlying distribu-
tion for the combined estimate is normal, the t distri-
bution can be used to develop confidence limits and 
perform statistical tests.  
 
The procedure is to first estimate the uncertainty using 
Eq. (10) and then estimate the degrees of freedom 
from the expression 
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2
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2

3 ,
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B
u
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a a e pϕ

σ
ν

ϕ

ϕ π

−
⎛ ⎞

≅ ⎜ ⎟⎜ ⎟
⎝ ⎠

≅
∆ + ∆

 (17) 

where 

1 1
2

pϕ − +⎛ ⎞= Φ ⎜ ⎟
⎝ ⎠

. 

The variables ∆a and ∆p represent "give or take" 
values for the containment limits and containment 
probability, respectively.   
 
At first glance, Eq. (17) may seem to be anything but 
rigorous.  However, several data input formats have 
been developed that rigorize the process of estimating 
∆a and ∆p [4].  They are available in the referenced 
software applications cited above [3, 7]. 
 
Striving for Conservative Estimates 
If an uncertainty estimate is viewed as an end product 
that will be filed away without application of any 
kind, then employing unrealistic distributions and 
fixed coverage factors may be considered acceptable 
by some.  Such distributions can yield statistically 
valid estimates, regardless of whether or not these 
estimates are physically valid. 
 
However, if an uncertainty estimate is to be employed 
in making decisions, such as may result from hypothe-
sis testing or decision risk analyses, employing a 
physically unrealistic distribution is to be discouraged.  
In these cases, advocating the use of such a distribu-
tion on the grounds that it yields conservative uncer-
tainty estimates is as irresponsible as employing inten-
tionally biased instruments to obtain measurements 
that are favorably skewed in one direction or another. 
 
In addition, the use of unrealistic distributions may 
yield estimates that are considerably smaller than 
what is appropriate under certain conditions.  The ex-
ample of estimating bias uncertainty for single-
parameter Navy general purpose items, mentioned 
earlier, is a case in point. 

 
Another consideration that argues against employing 
conservative uncertainty estimates is that this practice 
sometimes leads to "reckless" conclusions.  This is the 
case when a measurement from one laboratory is 
tested against a measurement from another to assess 
equivalence between laboratories.  If conservative 
estimates are used, the test actually becomes less 
stringent than otherwise. 
 
The bottom line is that conservative uncertainty esti-
mates are essentially zero-information quantities that 
have no legitimate use.  If conservatism is desired, it 
can be implemented by insisting on high confidence 
levels in estimating confidence limits after a valid 
uncertainty estimate is obtained.  The higher the con-
fidence level, the wider (more conservative) the confi-
dence limits. 
 
Recommendations for Selecting Dis-
tributions 
Unless information to the contrary is available, the 
normal distribution should be applied as the default 
distribution.  For Type B estimates, the data input 
formats alluded under the discussion of the Student's t 
distribution should also be employed to estimate the 
degrees of freedom.  If it is suspected that the distribu-
tion of the value of interest is skewed, apply the log-
normal distribution.  
 
In using the normal or lognormal distribution, some 
effort must be made to estimate a containment prob-
ability.  If a set of containment limits is available, but 
100% containment has been observed, then the fol-
lowing is recommended: 

1. If the value of interest has been subjected to ran-
dom usage or handling stress, and is assumed to 
possess a central tendency, apply the cosine distri-
bution.  If it is suspected that values are more 
evenly distributed, apply either the quadratic or 
half-cosine distribution, as appropriate.  The trian-
gular distribution may be applicable, under certain 
circumstances, when dealing with parameters fol-
lowing testing or calibration. 

2. If the value of interest is the amplitude of a sine 
wave incident on a plane with random phase, apply 
the U distribution. 

3. If the value of interest is the resolution uncertainty 
of a digital readout, apply the uniform distribution.  
This distribution is also applicable to estimating 
the uncertainty due to quantization error and the 
uncertainty in RF phase angle. 

 



 

 

General Procedure for Obtaining Un-
certainty Estimates 
Type A Estimates 
In making a Type A estimate and using it to construct 
confidence limits, we apply the following procedure 
taken from the GUM and elsewhere: 

1. Take a random sample of size n representative of 
the population of interest.  The larger the sample 
size, the better.  In many cases, a sample size less 
than six is not sufficient. 

2. Compute a sample standard deviation, u using Eq. 
(7). 

3. Assume an underlying distribution, e.g., normal. 
4. Develop a coverage factor based on the degrees of 

freedom (n – 1) associated with the sample stan-
dard deviation and a desired level of confidence.  If 
the underlying distribution is assumed to be nor-
mal, use either t-tables or Student’s t spreadsheet 
functions.  In Microsoft Excel, for example, a two-
sided coverage factor can be determined using the 
TINV function:  TINV((1 ), )t p ν= − , where p is 
the confidence level and ν is the degrees of free-
dom. 

5. Multiply the sample standard deviation by the cov-
erage factor to obtain L = tu and use ±L as 

100%p×  confidence limits. 
 
Type B Estimates 
In making a Type B estimate, we reverse the process.  The 
procedure is 

1. Take a set of confidence limits, e.g., parameter 
tolerance limits ±L (containment limits). 

2. Estimate the confidence level, e.g., the in-tolerance 
probability (containment probability). 

3. Estimate the degrees of freedom using Eq. (17). 
4. Assume an underlying distribution, e.g., normal.5 
5. Compute a coverage factor, t, based on the con-

tainment probability and degrees of freedom. 
6. Compute the standard uncertainty for the quantity 

of interest (e.g., parameter bias) by dividing the 
confidence limit by the coverage factor:  /u L t= . 

 

                                                           
5 The Type B estimation procedure has been refined so that 
standard deviations can be estimated for non-normal popula-
tions and in cases where the confidence limits are asymmet-
ric or even single-sided [3, 5].   
 

References 
[1] ISO/TAG4/WG3, Guide to the Expression of Un-

certainty in Measurement, International Organiza-
tion for Standardization (ISO), Geneva, 1993. 

[2] ISO/IEC 17025 1999(E), General Requirements 
for the Competence of Testing and Calibration 
Laboratories,  ISO/IEC, December 15, 1999. 

[3] UncertaintyAnalyzer, ©1994-1997, Integrated Sci-
ences Group, All Rights Reserved. 

[4] Castrup, H., "Estimating Category B Degrees of 
Freedom," Proc. Measurement Science Confer-
ence, January 2000, Anaheim. 

[5] AccuracyRatio, © 1992-2001, Integrated Sciences 
Group, All Rights Reserved.  

[6] Taylor, B. and Kuyatt, C., NIST Technical Note 
1297, "Guidelines for Evaluating and Expressing 
the Uncertainty of NIST Measurement Results," 
U.S. Dept. of Commerce, 1994. 

[7] ISG Category B Uncertainty Calculator, © 2000, 
Integrated Sciences Group, All Rights Reserved.  
Available from http://www.isgmax.com. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Brushwood
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [792.000 612.000]
>> setpagedevice


