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Summary 
A structured approach to uncertainty analysis is described that is applicable to product quality assessment and risk 
management.  Expressions are derived that incorporate estimated uncertainties in risk analyses to determine whether 
product parameters will be acceptable for intended applications. 
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Introduction 
In recent years, ISO and NIST guidelines (ISO 1992, Taylor 1993) and recommendations have been developed that 
provide a framework for analyzing and communicating measurement uncertainties.  These guidelines constitute a 
major step in building a common analytical language for both domestic and international trade.  This language is 
essential for a rigorous analysis of decision risks associated with measurement and testing. 
 

Measurement Decision Risk 
In measuring or testing a product, there exists the possibility that out-of-tolerance parameters will be perceived to be 
in-tolerance.  The probability that this will happen is called false accept risk.  False accept risk constitutes a measure 
of the quality of a measurement process as viewed by individuals external to the measuring organization.  The higher 
the false accept risk, the greater the chances for returned goods, loss of reputation, litigation and other undesirable 
outcomes.  In a commercial context, individuals external to a measuring organization are often labeled "consumers."  
For this reason, false accept risk has traditionally been called consumer's risk (Eagle 1954). 
 
A counterpart to false accept risk is false reject risk.  False reject risk is the probability that in-tolerance parameters 
are perceived to be out-of-tolerance.  False reject risk is a measure of the quality of a measuring process as viewed 
by individuals within the measuring organization.  The higher the false reject risk, the greater the chances for 
unnecessary re-work and re-test.  In a commercial context, a measuring organization is labeled the "producer," and 
false reject risk is called producer's risk (Eagle 1954). 
 
False accept risk and false reject risk, taken together, are referred to as measurement decision risk (Castrup 1978).  
This paper examines the impact of measurement uncertainty on measurement decision risk.  The discussion begins 
with a systematic prescription for analyzing uncertainty. 
 

Error and Uncertainty 
When we measure a physical parameter by any means (e.g., eyeballing, using off-the-shelf instruments, employing 
precise standards, etc.) we are making an estimate of the value of the quantity being measured.  Two features of such 
estimates are measurement error and measurement uncertainty. 



 

 

 
Measurement Error 
The difference between the value of a measured quantity and a measurement estimate of its value is referred to as 
measurement error.  Measurement error may be systematic or random. 
 
Systematic errors are classified as those whose sign and magnitude remain fixed over a specified period of time or 
whose values change in a predictable way under specified conditions. 
 
Random errors are those whose sign and/or magnitude may change randomly over a specified period of time or 
whose values are unpredictable, given randomly changing conditions.   
 
More will be said about random and systematic errors later. 
 
Measurement Uncertainty 
Measurement errors are never known exactly.  In some instances they may be estimated and tolerated or corrected 
for.  In others they may simply be acknowledged as being present.  Whether an error is estimated or acknowledged, 
its existence introduces a certain amount of measurement uncertainty (Castrup 1992 and 1995).   
 

Uncertainty Analysis Procedure 
The analysis of measurement uncertainty and the assessment of risks associated with this uncertainty follows a 
procedure that is simple and straightforward.  The basic framework of the procedure is illustrated below 
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The specific steps in the procedure are 

1. Define the quantity of interest.  Determine what variables need to be measured.  Set quality objectives and 
define acceptable levels of risk. 

2. Develop the system equation. 
3. Develop an error model describing total error as a function of source errors. 
4. Identify process error components for each source.  Estimate measurement process uncertainties. 
5. Estimate the total uncertainty. 
6. Evaluate risks and take appropriate action. 

 
The order in which these steps are taken is somewhat flexible.  For instance, in some cases step 6 may be a 
prerequisite for step 1. 
 

Problem Definition 
Define the Quantity of Interest 
We begin by focusing on a physical quantity y whose value is to be estimated through measurement.  We identify the 
measurable variables x1,x2, ... ,xn that are needed to estimate y. 
 
Establish Quality Objectives 
In estimating the value of y, we will need to express the quality or "accuracy" of our estimate.  We do this in terms of 
limiting values that can be said to contain the "true" value of the quantity with some specified probability.  Indeed, 
we equate the accuracy of the estimate with the limiting values and the associated containment probability.  The 
smaller the separation of the limits and the higher the containment probability, the better the quality of the estimate.  



 

 

It is important to note that, stating either the limiting values or the containment probability is not sufficient to 
quantify accuracy.  Both parameters are needed.2 
 
The probability of containment is called the confidence level and the limiting values are referred to as confidence 
limits.  We say that we have a "good" estimate if it falls within appropriate confidence limits with an acceptable 
confidence level.   
 
It is easy to see that a set of confidence limits and an associated confidence level can be viewed as parameters for 
controlling risk.  Saying, for example, that there is a 98% chance that the limits Y ± b contain the quantity y, is 
equivalent to saying that there is an estimated 2% risk that y will be found outside Y ± b. 
 

System Modeling 
We express the quantity y as a function of the n measurable variables xi, i = 1,2, ... , n 

 1 2( , , , )ny y x x x= � . (1) 

Equation (1) is called the system equation for the measurement.   
 

Error Modeling 
We recognize that each variable in the system equation is a potential source of error.  Accordingly, we develop the 
error model by expanding Eq. (1) in a Taylor series 
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where the notation ε(.) represents the error in the bracketed variable, and the zero subscripts indicate that the 
variables (error sources) xi and xj are to be taken at their nominal (or "errorless") values for the bracketed partial 
derivatives.  In cases where the errors in measurement are small, the second and higher order terms may be dropped, 
and Eq. (2) becomes 
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Eq. (3) is the error model for the determination of the quantity y.  The partial derivatives serve as weighting 
coefficients for the error sources 

 
0

i
i

yc
x

∂
∂

� �
= � �
� �

,  i = 1,2, ... ,n , (4) 

so that 
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Process Error Description 
The perceived values of the variables xi in Eq. (1) are obtained in measurement processes.  If each process involves a 
definable set of process error components εr(xi), r = 1,2, ... , ni, then the errors ε(xi) can be expressed as 
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where we use the notation εir = εr(xi).  The variable εir is the rth process error component of the ith error source. 
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Process Error Components 
It has been found useful to break process error components down as follows: 
 

Error Component Description 
Subject Parameter Bias Systematic discrepancy between the "true" value and the nominal or reading 

value of a parameter being measured. 
Measuring Parameter Bias Systematic discrepancy between the "true" value and the nominal or reading 

value of a parameter performing a measurement. 
Subject Parameter Random Random fluctuations in the value of a parameter being measured. 
Measuring Parameter Random Random fluctuations in the value of a parameter performing a measurement. 
Subject Parameter Resolution Error due to the finite precision with which values of a parameter being 

measured can be perceived. 
Measuring Parameter Resolution Error due to the precision with which values of a parameter performing a 

measurement can be perceived. 
Data Acquisition Error due to acquiring data from measurements.  Includes data sampling 

error, computation or "round off" error and operator bias. 
Stress Response Error due to stresses of shipping and handling of an item following 

measurement.  Stress response error is important in cases where a measured 
parameter's value is reported externally and the measured item is physically 
moved from the measurement environment to another location. 

Environment/Ancillary Equipment Error due to environmental factors or to ancillary equipment, such as 
temperature monitoring devices. 

Other Error due to sources peculiar to a given measurement scenario. 
 
 

Measurement Process Uncertainty Analysis 
Statistical (Category A) Estimates 
A statistical estimate of random uncertainty may be made on the basis of a sample of measurement data.  Random 
uncertainties are due to random fluctuations in measurements made with a measuring parameter or to random 
fluctuations in the value of the subject parameter.  If a sample of n measurements yields the values X1,X2, ... ,Xn, then 
the random uncertainty in a measurement X is estimated by the sample standard deviation 

 2

1

1 ( )
1

n

ran i
i

u X X
n =

= −
− � , (7) 

where 

 
1

1 n

i
i

X X
n =

= � . (8) 

In cases where the estimate uran is said to represent the uncertainty in the mean value X  rather than the uncertainty in 
a single measurement X, the applicable expression is 
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An uncertainty estimate obtained by statistical sampling is called a Category A estimate. 
 
Category A Degrees of Freedom 
The degrees of freedom ν for an uncertainty estimate based on a sample of size n is given by 

1.nν = −  



 

 

 
Heuristic (Category B) Estimates 
Estimating an uncertainty for errors from a given source where data samples are not available is very simple and 
straightforward.  Such an estimate can be obtained from heuristic limits that serve as bounds for errors from the 
source together with an estimate for the probability that these limits are expected to contain the errors. 
 
For this reason, it is tempting to refer to the heuristically estimated limits as "confidence limits."  However, 
confidence limits are quantities that are usually determined statistically.  To avoid confusing heuristic limits with 
statistical confidence limits, we sometimes call them "error limits" or "containment limits."  The probability that they 
contain errors from a source of interest is labeled the "containment probability." 
 
For normally distributed errors, with an estimated containment probability P and symmetric two-sided error limits 
±L, the uncertainty in the errors is obtained from 
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where the function 1( )−Φ ⋅  is the inverse normal distribution function.3  Likewise, the uncertainty in normally 
distributed errors bounded by a lower or upper single-sided limit, L1 or L2, may be estimated from 
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Not all errors are normally distributed.  For instance, if errors are uniformly distributed with 100% containment 
limits ±L, the uncertainty estimate is 

 
3
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Other distributions are also possible (Castrup 1992, ISG 1992-1994).   
 
There are several ways to determine heuristic uncertainty estimates.  In many cases, the above prescription is 
applicable.  In other cases, uncertainties may be estimated directly without recourse to containment limits or 
containment probabilities.  However it is arrived at, a heuristic uncertainty estimate is termed a Category B 
estimate.  It has been argued that Category B estimates are sometimes just as rigorous as statistical estimates 
(Castrup 1995). 
 
Category B Degrees of Freedom 
A method is available for computing degrees of freedom for Category B estimates (ISO 1992).  The use of this 
method requires estimating what are essentially confidence limits for the estimated error limits.  This is a refinement 
that may be beyond the scope of what can be done in practical situations.  Moreover, since Category B estimates are 
heuristic in character and, therefore, of a somewhat subjective nature anyway, embellishing a Category B estimate 
with such a refinement is rarely beneficial in the first place.  Consequently, the degrees of freedom for Category B 
estimates may be regarded as infinite in most cases without incurring any loss of credibility. 
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Uncertainty Modeling 
Statistical Variance 
A useful variable in analyzing measurement uncertainty is statistical variance.  The variance in a measurement may 
be thought of as the mean square error in the measurement.  It is defined in terms of an expectation value.  That is, if 
the mean or expected value of a variable x is µx, then the variance in x is given by 

 2var( ) [( ) ]xx E x µ= − , (13) 

where the function E(.) represents a statistical average over all possible values of x.  If x represents a measured value, 
then the error in x is written 

 ( ) xx xε µ= − , (14) 
and 
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Eq. (15) is an important axiom in analyzing uncertainties due to measurement... 
 

Axiom 1:  The variance in the measured value of a quantity is 
equal to the variance in the measurement error for the quantity. 

 
Combining Variances 
There is a simple rule that governs the variance of the sum of two quantities x1 and x2.  This rule states that, if a and b 
are constants (or "coefficients"), then 

 2 2
1 2 1 2 1 2var( ) var( ) var( ) 2 cov( , )ax bx a x b x ab x x+ = + + . (16) 

The term cov(x1,x2) is the "covariance" of x1 and x2 defined by 

 1 2 1 1 2 2cov( , ) [( )( )]x x E x xµ µ= − − . (17) 

Extending Eqs. (15) and (16) to Eq. (5) gives 
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We now introduce the notation var( )y yσ =  and var( )i ixσ = .  With this notation, substitution of Eq. (15) in Eq. 
(18) gives 
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Statistical Independence 
If variables exhibit no tendency to vary together, they are said to be statistically independent.  If two variables are 
statistically independent , their covariance is zero. 
 
Correlated Coefficients 
If two error sources are not statistically independent, then we say that they are correlated.  This correlation is 
quantified by a correlation coefficient.  A correlation coefficient of +1 means that two quantities vary in perfect step 
with one another.  If one goes up or down by a certain amount, the other goes up or down by a proportional amount.  
A correlation coefficient of zero means that two quantities are statistically independent.  A correlation coefficient of 



 

 

-1 means that two quantities vary in perfect step with one another but in opposite directions.  If one goes up or down 
by a certain amount, the other goes down or up by a proportional amount.  The correlation coefficient can be either 
estimated heuristically or computed from statistical samples (Castrup 1995, ISG 1994). 
 
The correlation coefficient ρij for two error sources or error components xi and xj is defined by the relation 
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where σi and σj are the standard deviations in xi and xj.  Using this definition, we can rewrite Eq. (19) as 
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Statistical Uncertainty - Standard Deviations 
When we sample a value of a random variable, we obtain a number that may take on a range of values.  In many 
cases, the range of values accessible to a variable is infinite.  This does not mean, however, that all values are equally 
likely.  For the most part, sampled values of a random variable tend to be distributed about some mean or mode 
value.  The statistic that quantifies this spread is the standard deviation.  The standard deviation is just the square 
root of the variance 
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In general, the greater the spread, the larger the standard deviation.  This means that, with large standard deviations, 
errors tend not to be "localized," i.e., the confidence with which they are known tends to be low.  Equating the word 
"confidence" with the less precise but more comfortable word "certainty," we argue that the standard deviation in the 
measurement of a quantity is synonymous with the quantity's uncertainty.  To make the equivalence clearer, we will 
henceforth denote standard deviations and other uncertainties by the letter u, rather than the symbol σ.  Making this 
substitution in Eq. (22) gives 
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Where the "y" subscript has been dropped for simplicity.  Note that, since measurement uncertainty is equated with 
the square root of measurement variance, Axiom 1 can be restated as 
 

Axiom 2:  The uncertainty in the measured value of a quantity is equal 
to the uncertainty in the measurement error for the quantity. 

 
What this axiom tells us is that, since measurement error is the discrepancy between the actual value of a parameter 
and a perceived or measured value, we can think of measurement uncertainty as either a lack of knowledge 
concerning the value of a measured parameter or as a lack of knowledge concerning the error in this value. 
 
The latter view is useful for two reasons.  First, it sets the focus of uncertainty analysis directly on the distributions of 
measurement errors, rather than on the distributions of variables participating in measurement.  Second, it forces us 
to a realization that, even though the error from a given source may be fixed over the course of a measurement, the 
uncertainty in this error is a statistical quantity that we estimate from a priori or other knowledge.  This allows us to 
avoid being sidetracked by semantics over whether errors are random or systematic.  Rather than bogging down in 
idle philosophical speculation, we attempt immediately to determine the vital statistics of each error distribution of 
interest and to estimate the uncertainties due to the relevant error sources. 
 



 

 

Combining Uncertainties 
From Eq (23) we write 
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If the ith error source is subject to ni process errors, then Eqs. (16) and (6) give 
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where the coefficient ρirq is the correlation coefficient between the rth and qth process error components of the ith 
error source.   
 
Cross Correlations 
In some cases, the process error of one error source is correlated with the process error of another.  The correlation 
coefficients ρij are thus influenced by these correlations.  We can derive an expression for ρij from the definition of 
covariance.  From Eqs. (60) and (17), the covariance in two errors εi and εj is given by 
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Substituting from Eq. (6) in Eq. (27) yields 
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where ρijrq is the correlation coefficient between the rth process error component of the ith error source and the qth 
process error component of the jth error source.  Substituting Eq. (28) in Eq. (24) gives the total uncertainty as 
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where 2
iu  is given in Eq. (25). 

 

Risk Evaluation 
After computing the uncertainty in a quantity of interest, we can establish total error confidence limits or 
containment limits.  Such limits may serve as factors for setting design goals for product parameters to ensure that 
acceptable levels of false accept or false reject risk are maintained. 
 



 

 

Category A Confidence Limits 
Determining confidence limits for a Category A uncertainty estimate is a straightforward and simple exercise.  For 
normally distributed errors, confidence limits are determined under the assumption that the uncertainty estimate is t-
distributed with ν degrees of freedom. 
 
When an uncertainty estimate is a combination of uncertainty estimates for n sources of error, each with ni normally 
distributed process error components, i = 1,2, ... , n, the degrees of freedom is determined from the Welch-
Satterthwaite formula 
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and 
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where u is the combined uncertainty estimate and ui and νi, i = 1,2, ..., n, are the uncertainty estimates and degrees of 
freedom, respectively, for the ith error source.   
 
Once the degrees of freedom has been established for an uncertainty estimate u, two-sided confidence limits ±L, 
corresponding to an error containment probability P, are determined according to 

 ,L t uα ν= , (32) 
where the variable α is given by 
 (1 )/2Pα = + .  (33) 

Similarly, lower and upper one-sided confidence limits L1 and L2 can be obtained from 

 1 1 ,PL t uν−= and     2 ,PL t uν=  . (34) 
Note: 
The assumption of a t-distributed total uncertainty breaks down if any component of the total process uncertainty is 
not normally distributed or approximately normally distributed.  In this event, the validity of a confidence limit for 
the total uncertainty is compromised (although the estimate of the uncertainty itself remains valid).  The extent of this 
compromise depends on the number of non-normal components and the departure from normality in each 
component. 
 
It should be mentioned that the assumption of a t-distributed total uncertainty is ordinarily justifiable.  Nevertheless, 
general computing methods are currently being developed to enable convolving the distributions of process 
uncertainty components into a total uncertainty distribution from which generally valid confidence limits can be 
determined (ISG 95). 
 
Category B Confidence Limits 
As argued earlier, the effective degrees of freedom for Category B can usually be set to infinity.  For normally 
distributed errors and an uncertainty estimate u with infinite degrees of freedom, two-sided error limits ± L are 
determined from 

 1 1
2
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Single-sided lower and upper error limits L1 and L2 are obtained using 

 1
1 (1 )L P u−= Φ − and     1

2, ( )PL P u−= Φ  . (36) 



 

 

For uniformly distributed errors that are symmetrically distributed around a quantity a and bounded by limits a ± L, 
the two-sided error limits ± L are given by L = PL. 
 

Risk Analysis and Uncertainty Estimates 
In conventional analyses of consumer and producer risk, expressions for false accept and false reject risk for 
normally distributed attributes are computed from joint probabilities functions (NASA 1994, Hayes 1955 - Deaver 
1993).  These probability functions are obtained by numerically integrating cumulative normal distribution functions 
over ranges of subject attribute or measurement attribute values. 
 
This paper describes how this numerical integration can be avoided under certain conditions by substituting 
cumulative distribution functions developed from a simple convolution of subject parameter and measurement 
parameter attributes. 
 

Matching Attributes Risk Analysis 
Single-Sided Risk 
Suppose we have two variables x and w distributed according to 
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The quantities ux and uw are the uncertainty estimates for the values of x and w.  These estimates are based on error 
source uncertainties for x and w that are, in turn, composed of appropriate combinations of process uncertainty 
estimates. 
 
Imagine that the variable w represents an artifact dimension and that the variable x represents a companion artifact 
dimension.  For instance, x could be the outside diameter of a bolt and w the inside diameter of a nut.  The quantity 
(w - x) is the nominal "play" between nut and bolt.  Obviously, the nut will not fit the bolt if w < x. 
 
The risk that this will happen is given by 
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We now express the same risk through the use of the distribution of the variable z = x - w.  By convolving x and w, 
we obtain this distribution as  
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where 
 2 2 2

x wu u u= + . (40) 
Since P(w < x) = P(z < 0), we have 
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Equating Eq. (41) with Eq. (38) gives the result 
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Equivalence with Uncertainty Analysis 

From Eq. (42), we surmise that setting a confidence level for the risk management of two normally distributed 
variables with means a and b and uncertainties ux and uw is equivalent to setting a confidence level for a normally 
distributed variable z with mean b - a and variance 2 2 2

x wu u u= + . 
 
To see how this works, suppose that a manufacturer of ordnance claims that the inside diameter of his cannons 
follows a 2( , )xN a u  distribution.  If we want to make cannon balls for these cannons, we need to be confident that our 
cannon balls will not get stuck in his barrels.  In other words, we need to control to some small amount α the 
probability that the diameter w of one of our cannon balls will be larger than one of his inside cannon diameters.  
Suppose that we settle on α = 0.01, i.e., a 99% chance that this won't happen. 
 
To control risks to α, we need to know the uncertainty in our manufacturing process.  Assume that the combined 
cannon ball manufacturing error is a 2(0, )wN u  variable and that the degrees of freedom for ux are large enough that 
we can use Eq. (36) with P = 1 - α to set an upper confidence limit for cannon ball diameters 

 1(1 )L uα−= Φ − . (43) 

We next move the mean diameter of our cannon ball manufacturing process to the point b = a - L and get a 1 - α 
probability that cannon balls will not be too big.  To verify this, we express the probability that a cannon's inside 
diameter w will be less that a cannon ball diameter x 
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We now substitute from Eq. (42) to get 
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Substituting for L from Eq. (43) gives 
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Two-Sided Risk 
The foregoing dealt with analyzing the risk of whether a given attribute was smaller (or larger) than another attribute.  
We now look at the problem of analyzing the probability of whether a given attribute lies within certain limits that 
bound another. 
 
Let x represent the value of the second attribute and let w represent the value of the first.  If the limits L1 and L2 
bound the acceptance region for the first attribute then the second attribute is acceptable if 

1 2x L w x L− ≤ ≤ + . 

Suppose that we want to implement the following probabilistic constraints: 

1 2( ) and ( )L UP w x L P w x Lα α< − = > + = . 

If x and w are 2( , )xN a u  and 2( , )wN b u  variables, respectively, then  
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and 
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We return to Eq. (42) and rewrite it as 

 
2 2( ) / 21 1

2
xx a u

wx

x b b ae dx
u uuπ

∞ − −

−∞

� �− −� �Φ = − Φ� � � �
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� , (46) 

where, as before, 2 2 2
x wu u u= + .  Substituting Eq. (46) in Eqs. (44) and (45) gives 

 1 ( )
L

L b a
u

α + −� �= Φ� �
� �

and      2 ( )
U

L b a
u

α − −� �= Φ� �
� �

 . (47) 

Eq. (47) can be used to solve for tolerance limits for w: 
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To illustrate the use of these expressions, we continue with the cannon/cannon ball problem.  In this particular 
application, we don't want cannon balls to be too small (w < x - L1), because this reduces their range.  On the other 
hand, we don't want cannon balls too large (w > x + L2), because this gets them stuck in the cannon.  The first 
alternative reduces cannon performance, while the second eliminates it.  Accordingly, we want to assign different 
levels of acceptable risk to each.   
 
Suppose that, because of engineering considerations L1 = 0.100 cm and L2 = 0.000 cm for a cannon of diameter a = 
10 cm.  Suppose further that we settle on risks of αL = 0.05 and αU = 0.01.  Then, since Φ-1(0.05) = -1.64485, and 

1−Φ  (0.01) = -2.32635, we have 
[9.900 cm (1.64485) ]Lb u= −  

and 
[10.000 cm (2.32635) ]Ub u= + . 

Once the uncertainty u in the cannon ball manufacturing process is determined, the tolerance limits follow 
immediately. 
 

Conclusion 
In employing uncertainty estimates in risk analyses, it is important to identify all relevant sources of measurement 
error.  This is facilitated by first developing an error model.  The error model provides a framework for analyzing 
total uncertainty and assists in identifying error sources.  Following the identification of error sources, each source is 
decomposed into its constituent process error components and the uncertainty in each component is estimated.  The 
component uncertainties for each source are then combined to yield an estimate of the uncertainty due to the error in 
the source.  Source uncertainties are next combined to yield a total measurement uncertainty. 
 



 

 

A total uncertainty estimate can serve as figure of merit for a measurement process.  In addition, a total uncertainty 
estimate can be employed in measurement decision risk management.  The uncertainty estimate a key ingredient in 
the computation of false accept and false reject risk, and can also be used to determine tolerance limits that control 
risks to meet quality objectives. 
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