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ABSTRACT 

Periodic calibration comprises a significant cost driver in the life 
cycle of Navy test and calibration equipment.  It also provides a 
major safeguard in controlling uncertainty growth and reducing 
the risk of substandard weapon system performance in the Fleet.   
 
Concepts central to calibration interval analysis and management 
are described.  Guidelines and techniques are presented that 
permit optimizing intervals with respect to both life cycle sup-
port costs and costs due to suboptimal weapon system perform-
ance.  Special focus is given to mathematical reliability modeling 
methods and to calibration history data management require-
ments. 
 

INTRODUCTION 

Why calibrate? 
We calibrate to control measurement errors and uncertainties to 
"acceptable" levels.  For calibration or test equipment, accept-
able levels of uncertainty are defined by the tolerance limits of 
the equipment's calibrated parameters.  
 

MEASUREMENT DECISION RISK 

Since measurements have associated with them a degree of un-
certainty, there is always a chance that the value of an out-of-
tolerance weapon system parameter will be measured by a test 
system as being within tolerance specifications.  The probability 
that this will happen is called false accept risk.  False accept risk 
results in out-of-tolerance items being returned to and used by 
the Fleet. 
 
Likewise, there is a chance that the value of an in-tolerance 
weapon system parameter will be measured as being outside tol-
erance specifications.  The probability for this is called false re-
ject risk.  False reject risk causes unnecessary rework, mainte-
nance or repair. 
 
False accept and false reject risks, taken together are referred to 
as measurement decision risk. 
 
There are a number of ways to control measurement decision risk 
[1-3].  In brief, suffice it to say that the smaller the measurement 
uncertainty relative to the tolerance limits of a parameter being 
measured, the lower the measurement decision risk (other factors 
being equal). 
 

CONTROLLING DECISION RISK 

Weapon system Testing Quality 
A major component of measurement uncertainty is measurement 
bias uncertainty.  In the context of this paper, the measurement 
bias of a parameter is the systematic difference between the ac-
tual value of the parameter and its stated or declared value.  The 
stated or declared value is commonly referred to as the nominal 
value. 
 
It can be shown [4,5] that the greater the decision risk in a 
calibration measurement the wider the spread of accepted test 
system parameter biases around the nominal value.  What this is 
equivalent to saying is the greater the calibration measurement 
decision risk, the more likely it is to find out-of-tolerance test 
system parameters slipping through the calibration process. 
 
Similarly, the greater the measurement decision risk during 
testing, the more likely it is to find out-of-tolerance weapon 
systems slipping through the testing process.  This assertion has 
been corroborated by the Navy's Equipment Tolerancing System 
(ETS) [4,5]. 
 
The end result of accepting out-of-tolerance items is a potential 
loss of weapon system or other capability in the Fleet due to in-
dividual parameters functioning outside their tolerance limits.  
This potential loss of capability is particularly dangerous, since 
out-of-tolerances are not readily perceived by equipment users.  



 

 

Equipment will seem to be functioning properly, when in fact it 
is not. 
 
In the modern arena of technologically intensive warfare, field-
ing systems with out-of-tolerance parameters can seriously jeop-
ardize the success of Fleet missions or even the survival of Fleet 
components.  Obviously, it is not in the best interest of National 
security to minimize the importance of controlling and managing 
measurement uncertainty. 
 
Controlling Measurement Uncertainty 
In the majority of cases that we have analyzed over the last sev-
enteen years, measurement bias has appeared as the major con-
tributor to measurement uncertainty, dominating random error 
and other measurement process errors.  Accordingly, maintaining 
a tight control on measurement bias goes a long way to control-
ling total measurement uncertainty.   
 
A measure of the control of a parameter's measurement bias is its 
in-tolerance probability.  In the parlance of measurement deci-
sion risk analysis, this is referred to as measurement reliability.  
The higher the measurement reliability, the lower the measure-
ment bias uncertainty and the lower the measurement decision 
risk. 
 
Reliability Targets 
It can be readily appreciated that measurement reliability is a 
useful variable to track in controlling measurement bias.  As with 
other technical parameters, we first establish control of meas-
urement reliability by setting an objective or target.   

Table 1.  Weapon system Test Decision Risk vs. 
Test Parameter Measurement Reliability. 

Test Accuracy Ratio = 10:1. 

End Item EOP Reliability = 95%

Test System
Measurement Reliability (%) Measurement Decision Risk (%)

EOP AOP False Accept False Reject
50 70.52 0.70 1.10
60 77.24 0.62 0.93
70 83.42 0.56 0.79
80 89.20 0.49 0.66
85 91.97 0.46 0.60
90 94.68 0.42 0.54
95 97.34 0.37 0.46
99 99.46 0.30 0.36

End Item EOP Reliability = 70%

Test System
Measurement Reliability (%) Measurement Decision Risk (%)

EOP AOP False Accept False Reject
50 70.52 1.72 1.96
60 77.24 1.51 1.69
70 83.42 1.32 1.46
80 89.20 1.15 1.25
85 91.97 1.06 1.14
90 94.68 0.96 1.03
95 97.34 0.84 0.90
99 99.46 0.68 0.71

 
 

Tables 1 and 2 show false accept risks for weapon system testing 
as a function of measurement reliability target.  These tables 
show false accept and false reject risks for cases where weapon 
systems are received for testing with end-of-period (EOP) in-
tolerance probabilities of 95% and 70%.  Test system in-toler-
ance probabilities are keyed to average-over-period (AOP) levels 
corresponding to various EOP targets.  As expected, the lower 
the test system parameter measurement reliability, the higher the 
false accept and false reject risks.2 

Table 2.  Weapon system Test Decision Risk vs. 
Test Parameter Measurement Reliability. 

Test Accuracy Ratio = 2:1. 

End Item EOP Reliability = 95%

Test System
Measurement Reliability (%) Measurement Decision Risk (%)

EOP AOP False Accept False Reject
50 70.52 1.77 12.00
60 77.24 1.69 9.50
70 83.42 1.60 7.55
80 89.20 1.49 5.92
85 91.97 1.43 5.16
90 94.68 1.36 4.41
95 97.34 1.26 3.57
99 99.46 1.10 2.55

End Item EOP Reliability = 70%

Test System
Measurement Reliability (%) Measurement Decision Risk (%)

EOP AOP False Accept False Reject
50 70.52 6.55 11.84
60 77.24 5.95 10.14
70 83.42 5.38 8.55
80 89.20 4.81 7.20
85 91.97 4.50 6.54
90 94.68 4.15 5.83
95 97.34 3.71 5.00
99 99.46 3.06 3.88

 
SETTING RELIABILITY TARGETS 

Reliability targets can be set on the basis of acceptable levels of 
measurement decision risk.  The question remains, what consti-
tutes an acceptable level?  To answer this question, we need to 
consider how measurement decision risk impacts weapon system 
utility, how much it costs when desired levels of utility are not 
maintained, and what it costs in terms of test and calibration sup-
port to achieve these levels. 
 
This issue is dealt with by the Navy's ETS and elsewhere [1,4,5].  
In particular, the model incorporated in ETS permits a 
determination of weapon system utility and costs associated with 
weapon system performance in scenario-specific contexts.  In the 
model, "performance" costs are balanced against test and 
calibration support costs in such a way that total cost can be 
minimized.  Performance costs include such considerations as 
cost of hardware, cost of mission loss, liability incurred in hitting 
the wrong targets, etc.  Support costs include equipment cost, 
labor cost, downtime cost, parts cost, etc.  
 

                                                           
2Tables 1 and 2 were developed using ETS. 



 

 

A byproduct of the cost minimization process is the determina-
tion of optimal reliability targets.  
 

UNCERTAINTY GROWTH 

As stated earlier, reliability targets provide objectives for manag-
ing measurement bias uncertainty.  This uncertainty is not a static 
quantity.  It begins to grow from the time of test or calibration 
and increases throughout the test or calibration interval. 
 

 
 
Controlling Uncertainty Growth 
When the bias uncertainty of a parameter has grown to the point 
where the in-tolerance percentage is equal to the reliability tar-
get, it is time to recall the parameter for re-testing or re-
calibration. 
 
Stated mathematically, if we represent the measurement reliabil-
ity for a parameter by R(t) and the reliability target by R*, the 
parameter should be re-tested or re-calibrated when 

 R t R( ) *= . (1) 
 
The occurrence of this event will not be detectable to the user of 
the item.  The time of occurrence of the out-of-tolerance event 
can, however, often be predicted by inferring the interval of time 
required for Eq. (1) to hold. 
 
This is accomplished by choosing a mathematical model to rep-
resent the function R(t) and fitting this model to observed test or 
calibration history data [6-8].  Once the fit is achieved, the 
variable t can be solved for. 
 

RELIABILITY MODELING AND ANALYSIS 

Mathematical Modeling 
Several models have been found that are useful for modeling 
uncertainty growth over time [1,7,8].  Each model is described in 
terms of a mathematical function, characterized by a set of 

coefficients.  For example, the exponential model is 
characterized by the parameters R0 and λ: 

 R t R e t( ) = −
0

λ ; (2) 

while the Weibull model is characterized by the coefficients R0, 
λ and β: 

 R t R e t( ) ( )
�

�

0
�

�

. (3) 
 
References 1 and 7 describe eight reliability models that have 
been found useful for calibration interval analysis.  These are 
shown in Table 3. 
 

Table 3.  Applicable Reliability Models 

MODEL APPLICABILITY 

Exponential Parameters whose out-of-tolerance rates are 
constant with time. 

Weibull Parameters whose out-of-tolerance rates increase 
or decrease with time, due to wear out or burn 
in. 

Mixed Exponential Items or parameter composed of several compo-
nents, each of which has a constant out-of-
tolerance rate. 

Random Walk Parameters whose out-of-tolerances occur as a 
result of random fluctuations in parameter value. 

Restricted Random 
Walk 

Parameters whose out-of-tolerances occur as a 
result of random fluctuations that are con-
strained within definable limits. 

Modified Gamma Parameters whose out-of-tolerances occur as a 
result of stresses accumulated over time. 

Mortality Drift Parameters whose out-of-tolerance rates increase 
or decrease monotonically with time. 

Warranty Parameters that tend to go out-of-tolerance 
within a narrow time interval. 

 
Analyzing Calibration/Test History Data 
In modeling measurement reliability vs. time, a method that has 
proved to be especially powerful is the method of maximum 
likelihood estimation.  With this method, the coefficients of a 
selected model are solved for in such a way that the probability 
of observing the particular history obtained for the parameter of 
interest is maximized. 
 
This involves assembling test or calibration history data in a time 
series of the form 
 

Time Since 
Measurement 

Number Tested or 
Calibrated 

Number In-
Tolerance 

t1 n1 g1 
t2 n2 g2 
. . . 
. . . 
. . . 
tk nk gk 

 
The tabulated data are then portrayed as a plot of % observed in-
tolerance vs. time since test or calibration.  Next, the mathemati-

0 t 

Parameter
Value 

Time Since Calibration / Test

X(t)

Projected Bias
X(t) = a + bt

Upper Uncertainty Limit 

Lower Uncertainty Limit 

 
 
Figure 1.  Bias Uncertainty Growth.  The case shown is for a pa-
rameter whose value drifts linearly with time.  Because of irregulari-
ties in usage, environment and other random variables, the uncer-
tainty in the projected bias also changes with time, as shown by the 
upper and lower uncertainty limits. 



 

 

cal reliability model is fit to the plotted points using the maxi-
mum likelihood method.  An example of such a fit is shown in 
Figure 2. 
 

It should be mentioned that, although fitting a reliability model 
to data, such as is done in Figure 2, appears graphically simple, it 
actually involves a complex mathematical process that has been 
developed over years of research [9-12].  This research is 
ongoing and promises to yield new methods that will be 
increasingly adaptable to desktop computing workstations. 
 

USING THE CORRECT MODEL 

Two major steps in arriving at an optimal test or calibration in-
terval are (1) selecting an appropriate reliability target and (2) 
using maximum likelihood methods to fit reliability models to 
observed time series.  A third major step involves selecting the 
best available reliability model. 
 
The importance of this third step cannot be minimized.  Because 
inventories of test equipment represent a variety of measurement 
disciplines, design approaches and fabrication technologies, no 
single reliability model is appropriate for all types of equipment 
[1,7,8]. 
 
To see that this is so, consider Figure 3.  Figure 3 shows the out-
put of an automated interval analysis program [14].  The inner 
curve is a fit of the exponential model to the data.  The middle 
curve is a fit of a model referred to as the modified gamma 
model and the outer curve is a fit of the well known Weibull 
model.  For the case shown, the Weibull model is the correct 
one.   
 

 
 

Figure 3.  Maximum Likelihood Reliability Model Fits.  
The inner curve is the exponential model, the middle curve is 
the modified gamma model, and the outer curve is the 
Weibull model.  The horizontal line is the reliability target, 
and the vertical line is the correct interval.  Even though state-
of-the-art curve fit methods were used for all three models, 
only one yielded the correct interval. 

 
 
Notice that, although all models were fit to the same data using 
state-of-the-art maximum likelihood methods, the intervals rec-
ommended by each are different: 
 

Computed Intervals (Reliability Target = 85%) 

Exponential 
Model 

Modified 
Gamma Model 

Weibull 
Model 

102 days 312 days 373 days 
 
If we had complacently assumed that the exponential model, for 
example, was applicable to the case in question, we would have 
been off by more than a factor of three.  This means that we 
would have set an interval that caused us to calibrate the item in 
question three times more often than necessary, with three times 
the support cost and one third the availability. 
 

SELECTING THE CORRECT MODEL 

A method that has been found to be effective in selecting the 
correct reliability model (or one close to it) is the method docu-
mented in references 1 and 7.  With this method, each model of a 
set of reliability models is fit to test or calibration history data 
taken on a given item.  The "quality" of the fit is then evaluated, 
with the model with the highest quality of fit being selected as 
the correct one. 
 
As is discussed in References 1 and 7, the quality of fit is in part 
a function of the statistical "goodness of fit," tempered by a 
decision algorithm that evaluates "representativeness of fit" and 
factors in economic considerations.   
 
A modification of this approach has recently been implemented 
[14].  The modified method has been successfully tested against 
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Figure 2.  A Measurement Reliability Time Series.  The 
observed time series is represented by the filled squares.  
The reliability model is represented by the curve. 

 



 

 

simulated calibration history featuring a variety of uncertainty 
growth mechanisms. 
 

MANAGING CALIBRATION DATA 
As was discussed earlier, the determination of a calibration inter-
val involves the analysis of data arranged as observed percent in-
tolerance vs. time since calibration or test (see Figure 2).  Such 
data are assembled from recorded results of calibration or test-
ing, organized into "calibration histories."  A calibration history 
consists of an unbroken sequence of calibration or testing results 
accompanied by the date of service for each service action.  
 
Since measurement decision risk is encountered at the equipment 
parameter level, an ideal calibration history would be one that is 
maintained for each parameter of interest.  Until automated or 
real-time desktop calibration procedures become more widely 
proliferated, however, it is not economically feasible to maintain 
histories by parameter.  At present, the best that can be expected 
is the maintenance of calibration histories at the equipment serial 
number level. 
 
With the maximum likelihood method of analysis, histories for 
individual serial numbered items are pooled into homogeneous 
groupings, usually at the manufacturer/model level.  The pooled 
data are then organized into successive windows of time.  In each 
time window, the number observed in-tolerance is divided by the 
number calibrated to arrive at the observed percent in-tolerance. 
 
The observed percents in-tolerance for the time windows are 
arranged chronologically in a time series.  Maximum likelihood 
methods are then applied to the time series to select the appro-
priate reliability model and to calculate the optimal calibration 
interval for the homogeneous grouping. 
 
Certain data management requirements must be met to ensure 
that this process produces a correct interval.  The minimum re-
quirements are summarized in Table 4.  Additional requirements 
that pertain to maximizing the potential of interval analysis for 
life cycle cost management are described in References 7 and 
[13]. 
 
In Table 4, the term "condition received" refers to whether the 
item was in-tolerance when received for calibration.  Since cali-
bration interval analysis attempts to set optimal recall schedules 
to prevent excessive use of out-of-tolerance items, it is important 
to be able to distinguish whether or not an out-of-tolerance 
condition is user detectable. 
 

 

Table 4.  Test/Calibration Interval Analysis 
Minimum Data Requirements 

REQUIREMENT DESCRIPTION 

Continuity Calibration histories should be free of missing 
service actions.  If missing service actions are 
present, they should be detectable. 

Completeness Each record should provide all information nec-
essary for analysis.  This information includes as a 
minimum (1) identification of the item serviced, 
(2) any special usage classification or designation, 
(3) date of service, (4) condition received prior to 
adjustment or other corrective service, (5) service 
action taken, (6) condition released. 

Consistency Each record in a serial numbered item's calibration 
history should reflect uniformity with respect to 
parameters calibrated, tolerances used, procedure 
used, etc.  If this is not the case, then the observed 
time series is contaminated and the resulting 
interval will be suboptimal. 

 
Note that the term "condition released" refers to whether the item 
was in-tolerance when returned to service.  Apart from the 
effects of false accept risk, it is usually assumed that items are 
returned to service in an in-tolerance condition. 
 
 

CONCLUSION 

We have seen that the ingredients of an optimal interval are the 
following 
 

Table 5.  Ingredients for Optimal Intervals 

INGREDIENT REQUIREMENT 
Test/calibration 
data quality 

As a minimum, data must meet the requirements 
of Table 4.  Experience shows that investments in 
data quality are returned many times over in terms 
of reduced support and performance costs. 

Appropriate 
reliability targets 

Targets should be adjusted to minimize total cost.  
Analysis of targets takes into account both support 
costs and costs due to false accept risk. 

Maximum 
likelihood 
analysis 

Data should be analyzed using maximum likeli-
hood or equivalent methods to best fit reliability 
models to test/calibration history time series. 

Appropriate 
reliability models 

Reliability models should be used that represent 
actual uncertainty growth behavior.  No single 
model is appropriate for modeling all cases. 

 
It cannot be over stressed that, if any one of these ingredients is 
missing, the resulting interval will be suboptimal.  Suboptimal 
intervals correspond to those that fail to meet reliability targets.  
The consequences of suboptimal intervals are shown in Table 6. 
 



 

 

Table 6.  Consequence of Suboptimal Intervals 

PROBLEM CONSEQUENCE 
Short Interval High calibration cost, cost of downtime, logistics 

problems. 
Long Interval High measurement decision risk, reduced prob-

ability of acceptable weapon system performance, 
potential high performance cost. 

 
It should be remarked that, until recently, it has been virtually 
impossible to quantify the cost of a long interval.  Since the ad-
vent of ETS [4] and other tools [2], however, we can now 
evaluate such costs, placing periodic calibration on a return on 
investment footing.  When the investment is made to optimize 
calibration intervals, the return is the assurance that Fleet readi-
ness will not be compromised by poor measurement reliability. 
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